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Introduction

This is a set of lecture notes, based on lectures given by Professor Sylvia Serfaty in the
Spring of 2020. It is also based on the book Linear Algebra Done Right by Sheldon Axler,
as well as Linear Algebra by Friedberg, Insel, and Spence.

Moreover, I have also interjected some of my own intuitions and explanations. For that
reason, any errors the reader may encounter are most likely mine.

I hope that this is an engaging set of notes, and is a helpful supplement for a first course
in linear algebra.
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1 Vector Spaces

Linear algebra is the study of linear maps onto finite-dimensional vector spaces. The mean-
ings of these two terms will be elucidated later on. For now, we will consider vector spaces
over arbitrary fields (e.g., the real numbers or complex plane). Finally, we will define rigor-
ously what we mean by subspace.

1.1 Review of Complex Numbers

A complex number is an ordered pair (a, b), where a, b ∈ R. For convenience, we write
complex numbers in the form

a+ bi

Next, let’s define the set of all complex numbers:

C = {a+ bi : a, b ∈ R}

Note that the dimension of Cn is 2n over the set R. As you may already know, elements of
C commute, associate, and are closed (that is, doing all operations give you an element in
the same set). For α ∈ C:

1. ∀λ ∈ C, λ+ 0 = λ, λ · 1 = λ (additive and multiplicative identities).

2. ∀α,∃!β ∈ C : α+ β = 0 (unique additive inverse).

3. If α 6= 0,∃!β ∈ C : αβ = 1 (unique multiplicative inverse).

4. λ(α+ β) = λα+ λβ.

Notationally speaking, we denote the additive inverse of α as −α, and the multiplicative
inverse as 1/α.

1.2 Arbitrary Fields

The stipulations above (commutativity, associativity, distributivity, existence of inverses,
existence of identities) are part of a family of axioms called the field axioms.

Notation (F). F denotes an arbitrary field (i.e., F follows the field axioms). x ∈ F is known
as a “scalar.”

A list of length n, (x1, x2, . . . , xn), where xi ∈ F, is known as an n-tuple. In such tuples,
order matters and repetitions have meaning, unlike in sets (Note: there are such things as
0-tuples!).

Definition 1.1 (Fn). Fn := {(x1, ...xn) : xi ∈ F for j = 1, . . . , n}

That is Fn is the set of all n-tuples whose elements are in F. Addition and subtraction
are component-wise.

Definition 1.2 (0). 0 is the n-tuple whose entries are all 0. Note that it is usually obvious
in context what n is, so we can use the same notation in different dimensions.
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One thing we should is to avoid using explicit coordinates whenever possible. Of course,
sometimes it is very convenient to use them. But it is much cleaner to rely on group-theoretic
notions that are more readily generalizable.

As in F, we have addition and scalar multiplication in Fn. There isn’t really a useful
way to construct multiplication that operates on two elements in Fn and outputs in Fn.

For x ∈ Fn, additive inverse is −x ∈ Fn such that x + (−x) = 0, where 0 ∈ Fn is the
identity element. Scalar multiplication is defined as

λx = (λx1, ...λxn)

Where λ ∈ F.

1.3 Definition of a Vector Space

The motivation behind defining a vector space comes from the properties of addition and
scalar multiplication. More formally, a vector space is a set V that has addition and scalar
multiplication, both of which commute, associate, have identities. Moreover, each v ∈ V
has an additive inverse −v ∈ V .

Definition 1.3 (Addition). Addition on V is a function tht assigns an element u+ v ∈ V
to each pair of u, v ∈ V .

Definition 1.4 (Scalar Multiplication). Scalar Multiplication on V is a function that
assigns an element λv ∈ V to each λ ∈ F and each v ∈ V .

Definition 1.5 (Vector Space). A vector space over F is a set V with addition and scalar
multiplication, such that for u, v, w ∈ V and for λ1, λ2 ∈ F:

1. u+ v = v + u; λ1λ2v = λ2λ1v (commutative).

2. (u+ v) + w = u+ (v + w); λ1(λ2v) = (λ1λ2)v (associative).

3. 0 ∈ V (additive identity).

4. ∀v ∈ V,∃!− v ∈ V : v + (−v) = 0 (unique additive inverse).

5. 1 ∈ F (existence of a multiplicative identity).

6. λ1(u+ v) = λ1u+ λ1v (distributive).

Definition 1.6 (Vector). Elements of a vector space are called vectors.

Notation. If S is a nonempty set, then FS denotes the set of all functions from S to F.
The sum f + g ∈ F is defined by

(f + g)(x) = f(x) + g(x)

Similarly, scalar multiplication, λf ∈ FS is defined by

(λf)(x) = λf(x).

Is FS a vector space? The answer is yes:

1. 0 ∈ FS . 0 here is the zero function, such that 0(x) = 0.
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2. FS is closed with respect to addition and scalar multiplication. That is, for λ ∈ F and
f, g ∈ FS , λf + g ∈ FS :

(λf + g)(x) = (λf)(x) + g(x) = λf(x) + g(x)

Which is in FS .

1.4 Subspaces

Definition 1.7 (Subspace). A subset U of V is called a subspace of V if U itself is a vector
space.

The following is a test for a subspace:

1. 0 ∈ U

2. For u,w ∈ U and a ∈ F, ⇒ au+ w ∈ U .

Note that U is a subspace of V if and only if these properties are satisfied.
When dealing with vector spaces, it is useful to define an addition of spaces that results

in another vector space.

Definition 1.8 (Sum of Subsets). For U1, . . . , Um that are subsets of V , we define the sum
to be

U1 + · · ·+ Um = {u1 + · · ·+ um : u1 ∈ U1, . . . , um ∈ Um}

Definition 1.9 (Direct Sum). The sum U1+· · ·+Um is called a direct sum if each element
of the sum can be written in only one way as a sum of u1 + · · ·+ um.

The sum of two subspaces U and W is a direct sum if and only if U ∩W = 0.

Notation (Direct Sum). We denote the direct sum of subspaces U1, . . . , Um as

U1 ⊕ · · · ⊕ Um
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2 Finite-Dimensional Vector Spaces

A useful way to generate subspaces is to define a linear combination, which is the addition
of scalar multiples.

Definition 2.1 (Linear Combination). A linear combination of a set of vectors {v1, . . . , vn}
in V is a new vector of the form

a1v1 + · · ·+ anvn

Where ai ∈ F.

We can now define a neat way to generate a subspace of vectors, which follows from the
definition of what a vector space is. That is to say, we leverage the fact that a vector space
has to be “stable” under linear combination.

Definition 2.2 (Span). The span is the set of all linear combinations of a set of vectors
{v1, . . . , vn} in V , which we denote via span(v1 . . . , vn). Formally,

span(v1, . . . , vn) := {a1v1 + · · ·+ anvn : a1, . . . , an ∈ F}

When span(v1, . . . , vn) = V , we say the set {v1, . . . , vn} spans (or generates) V .
We are now equipped to tackle the idea of a finite-dimensional vector space, which is a

core concept in linear algebra and the name of this section.

Definition 2.3. A vector space is finite-dimensional if some finite set of vectors spans
(generates) the space.

One very widespread example of a vector space is the set of all polynomials whose
coefficients are in F.

Definition 2.4 (Polynomial). A function p : F→ F is a polynomial with coefficeints in F
if there exist a0, . . . , am ∈ F such that

p(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m

We denote the set of all polynomials with degree less than or equal to m by

Pm(F)

You should verify that Pm(F) is a finite-dimensional vector space. The set of polynomials
that have no upper bound on degree is simply denoted P(F), and this is not a finite-
dimensional vector space but an infinite-dimensonial vector space. Do you see how no finite
list of vectors can generate the entire space?

2.1 Linear Independence

A crucial concept of finite-dimensional vector spaces is the notion of linear independence.
This simple notion is the base of many proofs in the course.

Definition 2.5 (Linear Independence). A set of vectors {v1, . . . , vm} in V is said to be
linearly independent if the only choice of a1, . . . , am ∈ F that makes a1v1+· · ·+amvm = 0
is a1 = · · · = am = 0. In other words,

a1v1 + · · ·+ amvm = 0⇒ a1 = · · · = am = 0

We define the empty set ∅ to be linearly independent. This is useful for inductive proofs.
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By the reasoning above, we deduce that a set is linearly independent if and only if each
vector in the span has only one unique representation as a linear combination o vi’s. A set
is linearly dependent if it’s not linearly independent.

The lemma below is useful and appears in many proofs. It stipulates that given a linearly
dependent set of vectors, we can throw out one vector without changing the span of the
original set.

Lemma 2.1 (Linear Dependence). Suppose W = {v1, . . . , vm} is a linearly dependent list
in V . Then there exists j ∈ {1, 2, . . . ,m} such that:

1. vj ∈ span(v1, . . . , vj−1)

2. If we remove vj from W , span(W \ {vj}) = span(W ).

Let us continue with a statement about subsets of sets of vectors:

Lemma 2.2 (Subsets of Linearly Independent sets). Let V be a vector space. For S1 ⊆
S2 ⊆ V , if S1 is linearly dependent, then S2 is linearly dependent.

Proof. Define S2 to be the set of m vectors S2 = {v1, . . . , vm}. Without loss of generality, let
us say that S1 is the subset of S2 such that S1 = {v1, . . . , vn}, where n ≤ m. By definition
of linear dependence, there exists a1, . . . , an, not all zero, such that

a1v1 + · · ·+ anvn = 0.

To prove that S2 is linearly dependent as well, we observe that

a1v1 + · · ·+ anvn + 0vn+1 + · · ·+ 0vm = 0

But not all coefficients a1, . . . , am are zero. Therefore S2 is linearly dependent. �

Corollary 2.3. Let V be a vector space. For S1 ⊆ S2 ⊆ V , if S2 is linearly independent,
then S1 is linearly independent.

I would encourage you to figure out the proof for this on your own, as it is incredibly
simple if you are familiar with propositional logic. A consequence of this lemma is the
following “Replacement Theorem,” from which lots of useful corollaries:

Theorem 2.1 (Replacement Theorem). Let V be a vector space generated by a set G
which contains n vectors, and L be a linearly independent subset of V with m vectors.
Then

1. m ≤ n, and

2. There exists a subset H ⊆ G containing n−m vectors such that span(L∪H) = V .

Proof. We begin with induction on m. Take L = ∅. Thus, H = G yields the desired result.
Now suppose that the theorem holds for m ≥ 0. Now we prove that the theorem is

true for m + 1. Let L = {v1, . . . , vm+1} be a linearly independent subset of V containing
m + 1 vectors. We observe that the subset {v1, . . . , vm} is also linearly independent by
Lemma 2.2. By the induction hypothesis, we assume that m ≤ n, and there is a subset
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{g1, . . . , gn−m} of G such that {v1 . . . , vm} ∪ {g1, . . . , gn−m} that generates V . Thus, there
are scalars a1, . . . , am and b1, . . . , bn−m such that

a1v1 + · · ·+ amvm + b1g1 + . . . bn−mgn−m = vm+1

Note that n−m > 0, otherwise vm+1 would be a linear combinatoin of vi’s, which contradicts
the fact that L is linearly independent. We know that some bi, say, b1, is nonzero. If not,
then we could write vm+1 as a linear combination of vi’s, which contradicts the assumption
that L is linearly independent.

This means we can express g1 as a linear combination of v′is and gi’s:

g1 = − 1

b1
(a1v1 + · · ·+ amvm + vm+1 + b2g2 + . . . bn−mgn−m)

Let H = {g2, . . . , gn−m}. Then g1 ∈ span(L ∪H). It follows that

{v1, . . . , vm, g1, . . . , gn−m} ⊆ span(L ∪H)

Because the set {v1, . . . , vm, g1, . . . , gn−m} generates V (because it was our original gener-
ating set), and it is a subset of span(L ∪H), then we know span(L ∪H) = V . Because H
is a subset of G containing n−m− 1 = n− (m+ 1) vectors (because we removed g1), the
theorem is true for m+ 1, completing the induction. �

2.2 Bases and Dimension

We can now combine the concepts of spanning sets and linearly independent sets.

Definition 2.6 (Basis). A basis of V is a set of vectors that is linearly independent and
spans (generates) V .

Claim. A set of vectors {β1 . . . , βn} is a basis of V if and only if every v ∈ V can be written
uniquely as a linear combination of the βi’s.

This follows from the fact that the βi’s are linearly independent (v is uniquely determined
by the linear combination of basis vectors), and that the set is spanning (we can reach every
v ∈ V ).

From Theorem 2.3, we can extract our first important corollary:

Corollary 2.4 (Invariance of Cardinality). Let V be a vector space with a finite basis.
Then every basis for V contains the same number of vectors.

Proof. Suppose β is a basis that has n vectors, and let γ be another basis for V . If γ has
more than n vectors, Because γ is linearly independent, and β generates V , we arrive at the
conclusion that m ≤ n, which is a contradiction. Therefore, we conclude the m vectors in γ
satisfy m ≤ n.

By symmetry, the same argument applies to β. We get the same constraint that n ≤ m,
so we conclude m = n. �

This corollary implies something deep about vector spaces. The cardinality of any two
basis sets are invariant. This invariant is how we define the dimension of a vector space.

Definition 2.7 (Dimension). The dimension of a finite-dimensional vector space is the
length of any basis of the vector space.
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Notation. We denote the dimension of a vector space V by dimV .

We can now freely use a “laziness principle” of sorts. If we know a basis of in question
has the correct number of vectors in it (i.e., dimV ), then we only need to check that it is
either linearly independent or spans V to verify that it is a basis.

Theorem 2.5 (Laziness Principle). In order to prove a finite set of vectors {v1, v2, . . . , vn}
is a basis for V , it is sufficient to demonstrate any two of the three properties:

1. n = dimV (correct number of vectors).

2. {v1, v2, . . . , vn} is linearly independent.

3. span(v1, . . . , vn) = V (the vectors are generating).

That is, any two properties immediately imply the third.

Proof. Suppose dimV = n, and {v1, . . . , vn} is linearly independent in V . By Theorem 2.3,
we can complete this linearly independent set into a spanning one by taking the union with
a subset H of G. However, H contains n− n = 0 vectors, so {v1, . . . , vn} is a basis.

Suppose now that {v1, . . . , vn} generates V . We know that there is some subset H that
is basis of of V , because we can eliminate linearly dependent vectors of G without changing
the span (Lemma 2.1). However, because all bases are the same length, and |H| = |G|, then
H = G, so {v1, . . . , vn} is a basis. �

We can now consider the inclusion-exclusion principle for summing subspaces:

Theorem 2.6 (Dimension of a Sum). If U1 and U2 are subspaces of a finite-dimensional
vector space, then

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2)

Notice how if U1 +U2 is a direct sum, then U1 ∩U2 = {0}, and so the equation above takes
the form

dim(U1 ⊕ U2) = dimU1 + dimU2.

Proof. Let {u1, . . . , um} be a basis of U1 ∩U2, so dim(U1 ∩U2) = m. Because it is a subset,
u is linearly independent in U1. By Theorem 2.3, we can complete it into a basis of U1 by
taking the union with some set H1, of cardinality j. Therefore, we have dimU1 = m + j.
Similarly, we take the union of u with a subset H2 of cardinality k to complete it into a
basis containing dimU2 = m+ k.

Next, let’s show that dim(U1 + U2) = m + j + k. We already know that u ∪ H1 ∪ H2

are generating sets. Now we must show that they are pairwise linearly independent to show
that their union is a basis to show the dimension is m+ j + k. It is obvious that u and H1

are linearly independent, because of the mechanics of Theorem 2.3; similarly, u and H2 are
linearly independent.

[TO BE CONTINUED] �
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3 Linear Maps

We now turn to likely the most important topic of linear algebra.

3.1 The Vector Space of Linear Maps

Definition 3.1. A linear map from a vector space V to a vector space W is a function
T : V →W with the following properties:

1. T (u+ v) = Tu+ Tv for all u, v,∈ V

2. T (λv) = λ(Tv) for all λ ∈ F and all v ∈ V .

Another term for linear map is a linear transformation.

Notation. The set of all linear maps from V to W is denoted

L(V,W )

There are many examples of linear maps. They include the zero map, the identity map,
differentiation, integration, and many, many more.

Next, we will prove the important fact that we can find a linear map that takes whatever
values we wish on the vectors in a basis. The result below shows that a linear map is
completely determined by its effects on a basis, which will be crucial in understanding the
matrix representation of linear maps later on.

Theorem 3.1. Suppose {v1, . . . , vn} is a basis of V , and {w1, . . . , wn} is a basis of W .
Then there exists a unique linear map T : V →W such that

Tvj = wj .

Proof. Define T : V →W by

T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cnwn

Where ci ∈ F. For each j, set cj = 1 and the other c’s to be 0. This shows that it satisfies
the property Tvj = wj as desired. It is easy to show that T satisfies linearity, so this should
be verified by the reader.

In order to show uniqueness, suppose T ∈ L(V,W ) and that it satisfies the aforemen-
tioned property. Because T is linear, T (cjvj) = cjwj . By additivity, we see that

T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cnwn.

Therefore, T is uniquely determined on V by the equation above. �

The results of this theorem imply that between two vector spaces with the same dimen-
sion, there is a unique linear map that can transform one basis into another, while preserving
coordinates. This fact should not yet be apparent, as we have yet to define what coordinates
are, and what coordinate representations of linear maps look like.
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3.2 Algebra on L(V,W )

Definition 3.2 (Addition and Scalar Multiplication on L(V,W )). For S, T ∈ L(U, V ), and
for λ ∈ F, we define the sum S + T to be

(S + T )(v) = Sv + Tv

And the product λT to be
(λT )(v) = λ(Tv)

for all v ∈ V .

As you should verify, L(V,W ) is a vector space.
Previously, we have not defined a multiplication on a vector space (that is, we have not

defined a function that takes in two elements of V and spits out another element in V ).
However, for linear maps, a product turns out to be quite useful. Therefore, we define the
product of linear maps:

Definition 3.3 (Product of Linear Maps). If T ∈ L(U, V ) and T ∈ L(v,W ), the product
ST ∈ T ∈ L(U,W ) is defined by

(ST )(u) = S(Tu)

for u ∈ U .

As you should verify, this product of linear maps is associative ((ST )R = S(TR)),
distributive (S +R)T = ST +RT and S(R+ T ) = SR+ ST ), and there exists an identity
map I (IT = TI = T ).

Warning. The product of linear maps is not commutative! That is, ST = TS is not
necessarily true.

One useful way to check if a map is indeed linear comes from the following theorem.

Theorem 3.2 (Linear Maps map 0 to 0). Suppose T ∈ L(V,W ). Then T (0) = 0.

Proof. T (0) = T (0 + 0) = T (0) + T (0), by additivity. Add the additive inverse −T (0) to
both sides to get T (0) = 0. �

3.3 Kernel and Image

In this section, we encounter two subspaces of V that are very closely connected to each
linear map.

Definition 3.4 (Kernel). For T ∈ L(V,W ), the kernel of T , denoted kerT , is the subset
of V consisting of vectors that map to zero:

kerT := {v ∈ V : Tv = 0}

Equivalently, some mathematicians will use the term “null space” instead of kernel.

Now an important question arises: Is the kernel of T a subspace of V ? Indeed, it is.

Theorem 3.3 (kerT is a Subspace of V ). For T ∈ L(V,W ), kerT is a subspace of V .
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Proof. We already know that 0 ∈ kerT , by Theorem 3.2. Moreover, for u, v ∈ kerT and
λ ∈ F, we see that

T (λu+ v) = T (λu) + T (v) = λT (u) + T (v) = 0.

�

This next definition about functions in general is very closely related to the concept of
the kernel.

Definition 3.5 (Injective). A function T : V → W is called injective if Tu = Tv implies
u = v. Equivalently, the definition for injectivity is that u 6= v implies Tu 6= Tv.

The gist of this definition is that T is injective if it maps distinct inputs to distinct
outputs. No different inputs will yield the same output. For instance, The function f(x) =
x2 is not injective, because both 2 and −2 produce the same output of 4. For this reason,
the phrase “one-to-one” is equivalently used by mathematicians. We shall see what exactly
this property has to do with the kernel.

Theorem 3.4 (T is Injective ≡ kerT = {0}). Let T ∈ L(V,W ). Then T is injective if and
only if kerT = {0}.

Proof. (⇒) Suppose T is injective. We know that T is a linear map, so 0 ∈ kerT by theorem
3.2. Suppose v ∈ kerT . Then T (v) = 0 = T (0) By injectivity, we conclude that v = 0.

(⇐) Suppose kerT = {0}. Then we want to show that T is injective. Suppose u, v ∈ V ,
and Tu = Tv. we want to show u = v. We have 0 = Tu−Tv = T (u− v). Because T (u− v)
is in kerT , and the only element is 0, then we deduce u− v = 0, so u = v, as desired. �

Now, let’s consider the outputs of a function.

Definition 3.6 (Image). For T : V →W , the image of T is the subset of W consisting of
vectors that are of the form Tv for some v ∈ V :

ImT = {Tv : v ∈ V }

Keep in mind that the kernel “lives” in the input space, and the image “lives” in the
output space. Despite this, they are very deeply related. Like the kernel, the image is a
subspace.

Theorem 3.5 (ImT is a Subspace of W ). If T ∈ L(V,W ), then ImT is a subspace of W .

Proof. Because V is a vector space, 0 ∈ V . And because T (0) = 0, we know that 0 ∈ ImT
(because 0 is T (v) for some v, namely v = 0). Next, for u, v ∈ ImT and λ ∈ F, u =
Tu′, and v = Tv′. We have

T (λu′ + v′) = λTu′ + Tv′ = λu+ v

Therefore, u, v ∈ ImT implies λu+ v ∈ ImT . Therefore ImT is a subspace of W . �

Much like the kernel, there is a property about functions in general that relates directly
to the image of a linear map.

Definition 3.7 (Surjective). A function T : V →W is called surjective if ImT = W .

Page 13



Notes on Linear Algebra Section 3

What this is essentially saying is that a function T is surjective if it “covers” every
element of W . That is, every w ∈W = Tv for some v ∈ V . For this reason, mathematicians
use the phrase “T is onto” to mean that T is surjective.

This next theorem is so important that it gets its own dramatic name.

Theorem 3.1 (Fundamental Theorem of Linear Maps). Suppose V is finite-dimensional
and T ∈ L(V,W ). Then ImT is finite dimensional and:

dimV = dim(kerT ) + dim(ImT ).

Remember this theorem well. It is the foundation for lots of application and theory alike.

Proof. Let {u1, . . . , um} be a basis for kerT . This means that dim(kerT ) = m. The set can
be extended into a basis of V :

u1, . . . , um, v1, . . . , vn

Therefore, dimV = m + n. To complete the proof, let us show that dim(ImT ) = n. With
our basis of V , we have that any vector in V can be represented by a linear combination of
u’s and v’s

w = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn

Where ai, bi ∈ F. We apply T to both sides of the equation:

Tw = T (a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn)

However, because ui is a basis for kerT , those terms map to zero once linearity is applied.
We are left with

Tw = b1T (v1) + · · ·+ bnT (vn)

This last equation implies that {Tv1, . . . , T vn} spans ImT . In order to show that Tv is a
basis for the image, and therefore that dim(ImT ) = n, we have to show linear independence.
We know that v is a linearly independent set, that is not in span(u1, . . . , um), because we
used it to complete u into a basis for V . Thus, if

b1T (v1) + · · ·+ bnT (vn) = 0

implies b1 = · · · = bn = 0, then we will have confirmed linear independence. Indeed, this is
the case. By linearity,

T (b1v1 + · · ·+ bnvn) = 0

The argument of T must be zero. If not, then it would be another element in the kernel. Then
some linear combination of ui’s would equal b1v1+· · ·+bnvn, but this cannot be since the two
sets u and v are linearly independent. Therefore, the only option is that b1 = · · · = bn = 0,
so we have proved that {Tv1, . . . , T vn} is a basis for ImT , so dim(ImT ) = n, as desired. �

As exercises, use the fundamental theorem of linear maps to prove the following:

Theorem 3.6. Suppose V and W are vector spaces such that dimV > dimW . Then no
linear map from V to W is injective (one-to-one).

Theorem 3.7. Suppose V and W are vector spaces such that dimV < dimW . Then no
linear map from V to W is surjective (onto).
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3.4 Matrices

By the conclusion we drew in Theorem 3.1, we know that if v is a basis of V , and T ∈
L(V,W ), then the values of Tv determine the values of T on arbitrary vectors in V . Matrices
are a way of neatly codifying this information. In order to rigorously define what a matrix
is, we need the concept of an ordered basis.

Definition 3.8 (Ordered Basis). Let V be a finite-dimensional vector space. An ordered
basis for V is a basis endowed with a specific order.

Example. In F3, β = {e1, e2, e3} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} can be considered an ordered
basis. Also, γ = {e2, e1, e3} = {(0, 1, 0), (1, 0, 0), (0, 0, 1)} is an ordered basis, but as ordered
bases, β 6= γ.

For the vector space Fn, we call {e1, . . . , en} the standard ordered basis or canonical basis
for Fn. For Pn(F), we call {1, x, x2, . . . , xn} the standard ordered basis for Pn(F).

Definition 3.9 (Coordinates). Let β = {β1, . . . , βn} be an ordered basis for V . For v ∈ V ,
v is uniquely determined by some linear combination of the βi’s:

x = a1β1 + · · ·+ anβn

We define the coordinate vector of v relative to β:

[x]β =


a1
a2
...
an

 .
Now that we have coordinates, we can go on to define what a matrix is.

Definition 3.10 (Matrix). The matrix representation A of T in the ordered bases β, γ is
an m× n array of of elements in F. We write A = [T ]γβ .

Note that the jth column of A is simply [T (βj)]γ . What this means is that we define a
matrix based on what the linear transformation does to its basis vectors. It is not possible
to have a matrix without specifying in which bases it is represented.

Definition 3.11 (Matrix Addition). The sum of two matrices of the same size m × n is
defined by adding the corresponding entries:a1,1 . . . a1,n

...
. . .

...
am,1 . . . am,n

+

 b1,1 . . . b1,n
...

. . .
...

bm,1 . . . bm,n

 =

 a1,1 + b1,1 . . . a1,n + b1,n
...

. . .
...

am,1 + bm,1 . . . am,n + bm,n


Next, we define scalar multiplication:

Definition 3.12 (Scalar Multiplication). The product of a scalar and a matrix is simply
the product of the scalar and each element:

λ

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

 =

λa1,1 . . . λa1,n
...

. . .
...

λam,1 . . . λam,n
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Representation of linear transformations follow the following properties, the proofs of
which are left to the reader.

Remark. For a matrix representation of a linear transformation, the following properties
hold:

1. [T + U ]γβ = [T ]γβ + [U ]γβ .

2. [aT ]γβ = a[T ]γβ .

As usual, matrices obey the same rules as linear transformations. After all, they are
the same object in essence. As such, we must define a product, since there is such thing
as a product for linear maps. The motivation for this multiplication makes it so that if
S : V →W and T : W → Z, where α, β, and γ are ordered bases for each space respectively:

[ST ]γα = [S]γβ [T ]βα.

Therefore, we define the following to be matrix multiplication:

Definition 3.13 (Matrix Multiplication). Suppoes A is an m×n matrix, and B is an n×p
matrix. Then AB is the m× p matrix whose entry in row i, column j is given by:

(AB)ij =

n∑
k=1

aikbkj

It is important to note that matrix multiplication is not commutative. That is, AB 6= BA
for most cases, even if both procucts are defined.

Theorem 3.8 (Product of Linear Maps in Matrix Form). Let U, V,W be finite-dimensional
vector spaces. Suppose S : V → W and T : W → Z, where α, β, and γ are ordered bases
for each space respectively:

[ST ]γα = [S]γβ [T ]βα.

This is proven because this property was motivation for the definition of matrix multi-
plication.

Corollary 3.9. Let V be a finite-dimensional vector space with an ordered basis β, and
U, T ∈ L(V ). Then [UT ]β = [U ]β [T ]β .

3.5 Invertibility and Isomorphisms

Let us begin this section by defining what we mean by invertible and an inverse.

Definition 3.14 (Matrix Inverse). A linear map T ∈ L(V,W ) is called invertible if there
exists a map T−1 ∈ L(W,V ) such that T−1T = I.

Theorem 3.10 (Unique Inverse). An invertible linear map has a unique inverse.

Theorem 3.2. (Invertible⇔ Injective and Surjective) A linear map is invertible if and
only if it is injective and surjective.
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Proof. Suppose T ∈ L(V,W ), and that T is invertible, and Tu = Tv.

u = T−1Tu = T−1Tv = v

Because u = v, T is injective. In order to prove T is surjective, let w ∈W :

w = T (T−1w)

Which shows that w is in the range of T for all w. Thus, ImT = W , completing this
direction.

Now, suppose T is injective and surjective. For each w ∈ W , let Sw be the unique
element of V such that TSw = w. Clearly, TS is the identity map on W . Then

T (STv) = TS(Tv) = Tv

Therefore ST is the identitty map on V . To complete the proof, we simply prove S is linear:

T (aSw1 + Sw2) = TSaw1 + TSw2 = aTSw1 + TSw2 = aw1 + w2

Thus Saw1 + Sw2 is the unique element of V that T maps to aw1 + w2. This implies
S(aw1 + w2) = aSw1 + Sw2, as desired. �

Definition 3.15 (Isomorphism). Two vector spaces are called isomorphic if there exists an
invertible linear map between them.

Theorem 3.11 (Isomorphic⇔ Same dimension). Two finite dimensional vector spaces are
isomorphic if and only if they have the same dimension.

Proof. First, assume the two spaces are isomorphic. By the fundamental theorem of linear
maps:

dimV = dim kerT + dim ImT

Because there is an invertible linear map, we know that dim ImT = dimW . Moreover,
because kerT = {0},

dimV = dimW

As desired.
Next, suppose V and W are finite dimensional and have the same dimension. Then

define T such that on the bases vi and wi,

T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ cnwn

T is well-defined, because vi is a basis for V by Theorem 3.1. T is surjective because wi
spans W , and the kernel is {0} because wi are linearly independent. Therefore, V and W
are isomorphic. �

We can extend this theorem to familiar linear spaces:

Theorem 3.12 (Dimension of L(V,W )). Suppose V and W are finite-dimensional. Then
dimL(V,W ) = dimV · dimW .

This follows from the fact that the dimension of a matrix is its rows times its columns,
as it needs that many basis vectors to fully represent it in the canonical basis.

We will now turn to vectors that are linear maps from a vector space to itself.
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Definition 3.16 (Linear Operator). A linear map in L(V, V ) = L(V ) is called an operator.

As you know, a linear map is invertible if and only if it is surjective and injective.
However, for operators, all three conditions are equivalent!

Theorem 3.3. Let V be finite-dimensional and T ∈ L(V ). Then the following are
equivalent:

1. T is invertible

2. T is injective

3. T is surjective

This can be proven by the all-powerful dimension theorem.

3.6 Change of Coordinates

Many areas of math use change of variables in order to greatly simplify a problem. Think
of u-substitution in calculus. Similarly, in linear algebra, the question arises: how can we
represent a coordinate vector in one basis to another? The idea is finding the identity
represented in both bases.

Theorem 3.13. Let β, γ be two ordered bases for V , and let Q = [IV ]ββ′ . Then

1. Q is invertible.

2. For any v ∈ V , [v]β = Q[v]β′ .

The proofs of these are rather trivial and will not be elaborated upon here.
Such a matrix Q is called the change of coordinate matrix; by (2) of the previous theorem,

we can see that Q changes β′ coordinates into β coordinates. Because Q is invertible, note
that Q−1 changes β coordinates into β′ coordinates.

Example. Let β = {(1, 1), (1,−1)} and β′ = {(2, 4), (3, 1)}. Since

(2, 4) = 3(1, 1)− 1(1,−1) and (3, 1) = 2(1, 1) + 1(1,−1)

The corresponding change of basis matrix is

Q =

[
3 2
−1 1

]
For instance,

[(2, 4)]β = Q[(2, 4)]β′ = Q

[
1
0

]
=

[
3
−1

]
We will, for the most part, only consider change of bases on linear operators:

Theorem 3.14. Let T be a finite-dimensional vector space. Let T ∈ L(V ). Suppose

Q = [IV ]ββ′ ; that is Q changes β′ coordinates to β coordinates. Then:

[T ]β = Q[T ]β′Q−1
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The proof of this follows from the fact that Q is the identity map, and that T = IT = TI,
and from Theorem 3.9. The notion of changing bases gives rise to the idea of similarity :

Definition 3.17 (Similar Matrices). Let A and B be matrices in Mn×n(F). We say that
B is similar to A if there exists an invertible matrix Q such that

B = Q−1AQ

Observe that the relationship between similar matrices is symmetric, because the labels
of Q and Q−1 are arbitrary.

3.7 Dual Spaces and Dual Maps

In linear algebra, there is a special place for linear maps from V to the scalar field F; they
have a special name.

Definition 3.18 (Linear Functional). A linear functional on V is a linear map from V to
F. That is, it is an element of L(V,F).

That vector space also gets its own name:

Definition 3.19. The dual space of V , denoted V ∗, is the vector space of all linear func-
tionals on V . That is,

V ∗ = L(V,F)

Theorem 3.15. Suppose V is finite-dimensional. Then V ∗ is also finite-dimensional and

dimV ∗ = dimV

This follows from the fact that the dimension of F is 1.
From theorem 3.1,

Definition 3.20. Let β = {v1, . . . , vn} be a basis for V . Then the dual basis of β is the list
ϕ1, . . . , ϕn of elements of V ∗, where

ϕi(vj) = δij

Theorem 3.16 (Dual Basis is a Basis of the Dual Space). Suppose V is finite dimensional.
Then the dual basis of V is a basis of V ∗.

Proof. Because there are n elements in both bases, we only need to prove linear indepen-
dence. Suppose

a1ϕ1 + · · ·+ anϕn = 0.

We know (a1ϕ1 + · · ·+anϕn)(vj) = aj . Therefore, because vi are linearly independent, then
ϕ1 . . . anϕn is lineraly independent.

�

Definition 3.21 (Dual Map, T ∗). If T ∈ L(V,W ) then the dual map of T is the linear map
T ∗ ∈ L(W ∗, V ∗) defined by

T ∗(ϕ) = ϕT for ϕ ∈W ∗
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We see that T ∗(ϕ) is defined to be the composition of linear maps ϕ and T (you should
verify that such a composition is indeed possible). These dual maps obey certain algebraic
properties:

Theorem 3.17 (Algebra of Dual Maps). The following are algebraic properties of dual
maps:

1. (S + T )∗ = S∗ + T ∗ for all S, T ∈ L(V,W ).

2. (λT )∗ = λT ∗ for all λ ∈ F.

3. (ST )∗ = T ∗S∗ for T ∈ L(U, V ) and S ∈ L(V,W ).

Proof. The first two proofs are easy. For the third, suppose ϕ ∈W ∗. Then

(ST )∗(ϕ) = ϕ(ST )∗ = (ϕS)T = T ∗(ϕS) = T ∗(S∗(ϕ)) = (T ∗S∗)(ϕ)

Where the first, third, and fourth equalities hold by the definition of the dual map, and the
second holds because composition of functions is associative, and the last from the definition
of composition. �

Next, our goal should be to describe kerT ∗ and ImT ∗ in terms of T . To do this, we
need something called an annihilator.

Definition 3.22 (Annihilator U0.). For U ∈ V , the annihilator of U denoted U0 is defined
to be

U0 = {ϕ ∈ V ∗ : ϕ(u) = 0,∀u ∈ U}

The annihilator is a subset of the dual space (U0 ⊆ V ∗). In plain English, it is the set of
all elements in the dual space such that ϕ of that element is 0. If ϕ sends all the elements
in U to 0, then it is an element of the annihilator.

Theorem 3.18. U0 is a subspace of V ∗.

Clearly, 0 ∈ U0, where 0 is the zero linear functional on V . The proofs of the rest are left
as exercises. We can now state some theroems about dual maps, by using the annihilator:

Theorem 3.19 (Dimension of U0). Suppose V is finite-dimensional and U is a subspace.
Then

dimU + dimU0 = dimV.

This is proved by using the dimension theorem and the dual map of the inclusion oper-
ator, i(u) = u for u ∈ U .

Theorem 3.20. Suppose V and W are finite-dimensional, and T ∈ L(V,W ). Then

1. ker(T ∗) = (ImT )0

2. dim ker(T ∗) = dim ker(T ) + dimW − dimV

Theorem 3.21. Suppose V and W are finite-dimensional, and T ∈ L(V,W ). Then

1. dim ImT ∗ = dim ImT

2. ImT ∗ = (kerT )0
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We will now define a useful idea in matrix manipulation, called the transpose.

Definition 3.23. The transpose of a matrix A, denoted At, is the matrix obtained by
interchanginf the rows and columns of A. That is,

(at)ij = aji

Theorem 3.22 (Transpose of Product). (AB)t = BtAt

This follows from the definition of transposition and matrix multiplication. Further still,
note that the matrix of T ∗ is the transpose of T :

Theorem 3.23. Suppose T ∈ L(V,W ). Then [T ∗]β = [T t]β .
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4 Systems of Linear Equations

There are certain operations we can do on the rows and columns of matrices that preserve
a certain property of the matrix’s dimensionality.

4.1 Elementary Operations and Matrices

We define such operations below:

Definition 4.1 (Elementary Row/Column Operations). Let A be an m × n matrix. Any
one of the following three operations are considered elementary row or column operations:

1. Interchanging any two rows/columns of A

2. Multiplying any row/column by a nonzero scalar,

3. Adding any scalar multiple of a row/column of A to another row/column.

An elementary matrix is an n× n matrix obtained by performing either 1,2,or 3 on In.
It is said to be “type” 1,2, or 3 based on the operation performed to obtain it. You should
verify that if B is obtained from doing an elementary row/column operation on A, then
there is an elementary matrix E which is m×m / n× n such that

B = EA

Theorem 4.1. Elementary matrices are invertible, and the inverse of an elementary matrix
is an elementary matrix of the same type.

Below are some properties of these matrices:

1. Elementary matrices are always square

2. The inverse of an elementary matrix is an elementary matrix

3. E is an elementary matrix if and only if Et is.

4.2 Rank and Inverse of Matrices

Definition 4.2 (Rank). The rank of a linear map is defined to be the dimension of the
range of the map. In other words,

rankT := dim(ImT )

Equivalently, the rank of a matrix is the rank of the linear map it represents. Notice how
rankT = rank[T ]γβ

We need a result that allows us to perform rank-preserving operations on matrices:

Theorem 4.2 (Rank Preservation). Let A be an n × n matrix. If P and Q are invertible
m×m and n× n matrices respectively, then:

1. rankAQ = rankA

2. rankPA = rankA
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3. rankPAQ = rankA

By this, it is clear that elementary row/column operations are rank-preserving, because
they are simply matrices that are invertible. The following can be said about a matrix:

Theorem 4.3. The rank of any matrix equals the maximum number of linearly independent
columns; the rank of a matrix is the subspace generated by its columns.

Now that we know how the rank is calculated, we can arrive at the following natural
result:

Theorem 4.4. Let A be an m×n matrix of rank r. Then r ≤ m and r ≤ n, and by means
of a finite number of elementary row and column operations A can be transformed into the
matrix

D =

[
Ir O1

O2 O3

]
Where O is a zero matrix of a certain size. Thus, Dii = 1 for i ≤ r and Dij = 0 otherwise.

As a consequence, we can state the following corollary:

Corollary 4.5. Let A be an m× n matrix of rank r. Then there exist invertible matrices
B and C, m×m and n× n respectively, such that

D = BAC

Where D is the matrix specified above.

This is true because in a finite number of elementary row and column operations, we
can transform any matrix by Theorem 4.4; if we have a product of matrices E1 · · ·En, the
inverse would be E−1n · · ·E−11 (this is obvious by multiplying the inverses on the left hand
side). Yet another corollary may be stated:

Corollary 4.6. Let A be an m× n matrix. Then

1. rankA = rankAt

2. rankA = maximum number of linearly independent rows (i.e., the dimension of the
subspace created by the rows of the matrix).

3. The above is true for the columns of the matrix as well.

Proof. It is easy to see that if we do elementary row and column operations to obtain our
matrix D, there is a symmetry between the transpose matrices; a row operation on one is
a column operation on the other. From the corollary above, we know D = BAC; therefore
Dt = CtAtBt. Because B and C are invertible, so are the transposes. Therefore, the ranks
are equal by Theorem 4.2. �

Corollary 4.7. Every invertible matrix is a product of elementary matrices.

Proof. If A is an invertible matrix, then it is n× n and DA = In. Therefore

In = BAC

Where B and C are the products n× n elementary matrices. Therefore,

A = C−1B−1

Because C and B are the products of elementary matrices, their inverses is the product of
inverse elementary matrices—which themselves are elementary matrices, as desired. �
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We are now able to state an important theorem:

Theorem 4.8. Let T : V → W and U : W → Z on finite-dimensional vector spaces. Let
A,B be matrices such that their product is defined. Then:

1. rank(UT ) ≤ min(rankU, rankT )

2. rank(AB) ≤ min(rankA, rankB).

4.2.1 Inverse of a Matrix

Definition 4.3. Let A and B be m × n and m × p matrices, respectively. We define the
augmented matrix (A|B) to be the m× (n+ p) matrices such that the first n columns are
of A, and the remaining P columns are the columns of B.

When computing the inverse of a matrix, we augment it with the identity matrix (A|I),
and whatever row operations we do on A are reflected in the identiy. We do this until we
have (I|A−1), and the augmentation will be our desired inverse matrix. If this cannot be
done, then A is not invertible.

Example. If we start with the matrix

(A|I) =

 0 2 4 1 0 0
2 4 2 0 1 0
3 3 1 0 0 1


And we attempt to use elementary row operations to transform the left hand side to I, we
obtain  1 0 0 1/8 −5/8 3/4

0 1 0 −1/4 3/4 −1/2
0 0 1 3/8 −3/8 1/4


Therefore,

A−1 =

 1/8 −5/8 3/4
−1/4 3/4 −1/2
3/8 −3/8 1/4

 .
4.3 Systems of Linear Equations

We can use a matrix to neatly codify information we have been given from a linear system of
equations. From a given set of equations, we can construct a so-called “coefficient matrix”
with the coefficients of each system:a1,1 . . . a1,n

...
. . .

...
am,1 . . . am,n


If we let

x =

x1...
xn

 and b =

b1...
bn
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Then we have the liberty to write the system simply as

Ax = b

A solution to the systemk is an n-tuple such that

As = b

The set of all solutions to the system is called the solution set. A system S is called
inconsistent if the solution set is empty, and consistent otherwise.

Definition 4.4 (Homogeneous System of Linear Equations). A system Ax = b of linear
equations in n unknowns is said to be homogenous if b = 0; otherwise, it is said to be
nonhomogeneous.

Any homogenous linear system has the trivial solution of x = 0.

Theorem 4.9. Let Ax = 0 be a homogenous system of linear equations over F. Let K
denote the set of all solutions. Then K = kerLA, where LA is the linear transformation
represented by the matrix A.

This is apparent; if As = 0, then s is by definition in the kernel. If s is in the kernel,
then it is a solution to Ax = 0. Therefore the solution set and the kernel are equal. This
immediately produces the following important theorem about homogenous linear systems:

Theorem 4.10. Let Ax = 0 be a system of equations. Then the set of solutions forms a
linear subspace. Moreover, if A is invertible, then the only solution is x = 0.

This is clear from the preceeding theorem, which states that the solution set is equal to
the kernel of A, which is itself a subspace. If A is invertible, then kerA = {0}, which is also
a subspace. Therefore, for homogeneous linear systems, linear combinations of solutions are
solutions as well.

We can state a similar theorem for nonhomogeneous systems:

Theorem 4.11. Let Ax = b be a system of n linear equations in n unknowns. If A is
invertible, then the system only has one solution given by

A−1b.

Conversely, if the system only has one solution, then A is invertible.
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5 Determinants

The determinant is a special scalar-valued function defined on the set of square matrices.
It is n-linear, and posesses some interesting properties. Before delving into a more general
version of determinants, we will first consider the simplest case for computing determinants,
ignoring the set of 1× 1 matrices.

5.1 Determinants of 2× 2 Matrices

Definition 5.1 (Determinant of order 2). Suppose we are given the matrix

A =

[
a b
c d

]
Then we define the determinant of A, denoted by detA to be the scalar ad− bc.

Note that the determinant is not a linear map; det(A + B) 6= det(A) + det(B), as you
should verify. The value of the determinant can actually provide very useful information on
the nature of A and of LA proper:

Theorem 5.1. Let A ∈ M2(F). Then det(A) 6= 0 if and only if A is not invertible.
Moreover, if A is indeed invertible, then its inverse is given by

A−1 =
1

det(A)

[
d −b
−c a

]
5.2 Determinants of Order n

In this section, we extend the definition of determinants to square matrices with n > 2.
With this in mind, it is useful to cretate new notation in order to aid our generalizations:

Notation. Given A ∈Mn(F), denote the (n− 1)× (n− 1) matrix made by deleting row i
and column j by Ãij .

We are now able to compactly write the definition of the determinant for matrices.

Definition 5.2. Let A ∈Mn(F). If n = 1, then we define det(A) = a1,1, or the only entry
of A. For n ≥ 2, we define det(A) recursively as:

det(A) =

n∑
j=1

(−1)j+1a1,j · det(Ã1j)

This definition is compliated, so the reader is encouraged to practice computing the
determinant independently. When each row of a matrix is held fixed, we see that the
determinant is a linear function of each row when the remaining rows are held fixed.

Theorem 5.2. The determinant of an n×n matrix is n-linear; that is, it is a linear function
of each row when the remaining rows are held fixed. In other words,

det



a1
...

u+ kv
...
an

 = det



a1
...
u
...
an

+ k det



a1
...
v
...
an
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where k is a scalar, and u, v, and ai are row vectors in Fn.

Corollary 5.3. If A ∈Mn(F) has a row consisting entirely of zeros, then det(A) = 0.

This follows from the fact that if a matrix is not invertible, then it can be reduced to a
matrix with a row of zeros somewhere.

Theorem 5.4. The determinant of a square matrix can be evaluated by cofactor expansion
along any row. That is,

det(A) =

n∑
j=1

(−1)i+1ai,j · det(Ãij)

Theorem 5.5. If B is a matrix obtained by swapping any two rows of A, then det(B) =
−det(A).

Theorem 5.6. Let A be an n× n matrix and B be a matrix obtained by adding a scalar
multiple of a row of A onto another row of A. Then det(B) = det(A).

We can summarize the effects applying elementary matrices to A have:

1. If B is a matrix made by interchanging any two rows of A, then det(B) = −det(A).

2. If B is a matrix made by multiplying a row of A by a nonzero scalar k, then det(B) =
k det(A).

3. If B is a matrix obtained by adding a scalar multiple of a row of A onto another row
of A, then det(B) = det(A).

5.3 Properties of Determinants

In this section, we summarize important properties of determinants.

Theorem 5.1 (Properties of determinants). det(AB) = det(A) · det(B).

det(A) 6= 0 if and only if A is invertible.

If A is invertible, det(A−1) = 1/ det(A).

det(At) = det(A).

If A and B are similar matrices, then det(A) = det(B).

5.4 Determinants, Abstractly

For the first part of this entire section, we have only considered the computational aspects
of the determinant, and we have derived the above properties from said computations. It
is now time to characterize the determinant by only three of these properties; that is, the
only function δ :Mn(F)→ F having these properties is the determinant. The first of these
properties is that of being n-linear.
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Definition 5.3 (n-linear function). A function δ :Mn(F)→ F is called an n-linear function
if it is a linear function of each row of an n× n matrix when the remaining n− 1 rows are
held fixed; that is, for every r = 1, . . . , n, we have

δ



a1
...

u+ kv
...
an

 = δ



a1
...
u
...
an

+ kδ



a1
...
v
...
an


where k is a scalar, and u, v, and ai are vectors in Fn.

This should look familiar, as we already mentioned that the determinant is an n-linear
function. Next, we introduce the second property:

Definition 5.4 (Alternating function). An n-linear function is called alternating if we
have δ(x1, . . . , xi, xj , . . . , xn) = 0 whenever xi = xj (that is, two adjacent row vectors are
identical).

With these two properties, we are allowed to state the following theorem about n-linear
alternating functions.

Theorem 5.7. Let δ :Mn(F)→ F be alternating and n-linear. Then

1. If B is a matrix obtained by interchanging two rows of A, then δ(B) = −δ(A).

2. If A has two identical rows, then δ(A) = 0.

Proof. Because δ is alternating and n-linear, we have

0 = δ



a1
...

ar + ar+1

ar + ar+1

...
an


= δ



a1
...
ar

ar + ar+1

...
an


+ δ



a1
...

ar+1

ar + ar+1

...
an



= δ



a1
...
ar
ar
...
an


+ δ



a1
...
ar
ar+1

...
an


+ δ



a1
...

ar+1

ar
...
an


+ δ



a1
...

ar+1

ar+1

...
an


= 0 + δ(A) + δ(B) + 0

In the case that the two are not next to one another, we can perform s− r interchanges
in order to get the sequence

a1, . . . , as, ar, as+1, . . . , an
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And then perform an additional s− r − 1 swaps to get the sequence

a1, . . . , ar−1, as, ar+1, . . . , as−1, ar, as+1, . . . , an

This means that we multiply δ(A) by −1 a total of (s− r) + (s− r− 1) times. Because this
is always odd, δ(B) = −δ(A) as desired.

Next, for (2), we can make B the matrix obtained by swapping until the two identical
rows are next to each other, so δ(B) = 0. But we also know that δ(B) = −δ(A), so
δ(A) = 0. �

Corollary 5.8. If B is obtained by adding the multiple of one row of A onto another row,
then δ(B) = δ(A).

Proof. Like before, we can use linearity. If there is a linear combination of the rows ai+kaj ,
we observe that

δ(B) = δ(A) + kδ(C)

Where C is the matrix with aj in the ith row. But because C has two copies of the same
row, δ(C) must be zero. �

From this, we can clealy see the effect δ has on elementary matrices.

Corollary 5.9. Observe that

1. δ(E1) = −δ(I)

2. δ(E2) = kδ(I)

3. δ(E3) = δ(I).

Where E1, E2, E3 are the three types of elementary matrices.

Theorem 5.10. Suppose δ(I) = 1. Then we have δ(AB) = δ(A)δ(B).

Proof. If either A or B are not invertible, then the product AB is also not invertible.
Therefore the determinant of the product and the product of the determinants both equal
zero.

If they are both invertible, that means that A can be written as the product of elementary
matrices. The effect an elementary matrix has on another matrix’s δ is always multiplicative.
Therefore, we can iterate over A = E1 · · ·Em, taking out each elementary matrix from the
product, until we have δ(E1) · · · δ(Em)δ(B), whereby we then collapse the product of deltas
back into A, so we get δ(AB) = δ(A)δ(B). �

Finally, we show the equivalence between the two functions.

Theorem 5.11. If δ : Mn(F) → F is an alternating n-linear function such that δ(I) = 1,
then δ(A) = det(A) for every A ∈Mn(F).

Proof. Clearly, if A is not invertible, δ(A) = det(A) = 0. If A is invertible, then it is the
product of elementary matrices. Thus,

δ(A) = δ(E1 · · ·Em) = δ(E1) · · · δ(Em) = det(E1) · · · det(Em) = det(E1 · · ·Em) = det(A)

�

Having proved that δ yields the same results as the determinant for all invertible and non-
invertible matrices, we can conclude that by just specifying these properties, δ(·) = det(·).
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6 Eigenvalues, Eigenvectors, and Diagonalization

6.1 Eigenvectors and Eigenvalues

Definition 6.1. Suppose T ∈ L(V ). A scalar λ ∈ F is called an eigenvalue of T if there
exists v ∈ V such that v 6= 0 and

Tv = λv

We can now state some equivalent conditions to being an eigenvalue.

Theorem 6.1 (Equivalent Conditions to Being an Eigenvalue). The following conditions
are equivalent for T ∈ L(V ) and λ ∈ F:

1. λ is an eigenvalue of T ;

2. (T − λI) is not injective (one-to-one);

3. (T − λI) is not surjective (onto);

4. (T − λI) is not invertible

We can derive these by manipulating the equation Tv = λv to get (T − λI)v = 0. Now
that we understand what an eigenvalue is, we can now define an eigenvector:

Definition 6.2. Suppose T ∈ L(V ) and λ ∈ F is an eigenvalue of T . A vector v ∈ V is
called an eigenvector of T corresponding to λ if v 6= 0 and Tv = λv.

We will now prove that one can have a basis of eigenvectors if there are n distinct
eigenvalues.

Theorem 6.1. Let T ∈ L(V ), and suppose λ1, . . . , λn are distinct eigenvalues of T , and
v1, . . . , vn are corresponding eigenvectors. Then v1, . . . , vn are linearly independent.

Proof. Suppose v1, . . . , vn are linearly dependent, and let k be the smallest number such
that

vk ∈ span(v1, . . . , vk−1).

Therefore, there exist scalars ai such that

vk = a1v1 + · · ·+ ak−1vk−1

If we apply T to both sides of this equation, we obtain

λkvk = a1λ1v1 + · · ·+ ak−1λk−1vk−1

Multiplying the above equation the last by λk and subtracting both, we get

0 = a1(λk − λ1)v1 + · · ·+ ak−1(λk − λk−1)vk−1

Because all the eigenvalues are distinct, we know that each of the ai’s must be equal to zero.
But that means vk is equal to zero. Becuase vk is an eigenvector of T , this cannot happen.
Therefore we must conclude that they are linearly independent as desired. �

Corollary 6.2. Suppose V is finite-dimensional. Then each operator on V has at most
dimV distinct eigenvalues.

Proof. This is follows from the fact that there can be a set of at most dimV linearly indepen-
dent vectors, and distinct eigenvalues correspond to linearly independent eigenvectors. �
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6.2 Diagonal Matrices

Definition 6.3 (Diagonal Matrix). An n× n matrix D is diagonal if it is of the formλ1 0
. . .

0 λn


i.e., it only has entries on the main diagonal.

Definition 6.4. An operator T ∈ L(V ) is called diagonalizable if there is an ordered basis
β for V such that [T ]β is a diagonal matrix.

Equivalently, we observe that through change of basis, [T ]γ is similar to a diagonal
matrix:

[T ]β = Q−1[T ]γQ

[T ]γ = Q[T ]βQ
−1

Where Q = [I]γβ , or the matrix that changes β coordinates into γ coordinates.
Notice how if β = {v1, . . . , vn} is an ordered basis for V such that D = [T ]β is a diagonal

matrix, we have T (vi) = λvi, because [vi]β will be the vector with a 1 in the ith slot, and
so in multiplying we effectively isolate the scalar λi on the diagonal.

Conversely, if β = {v1, . . . , vn} is an ordered basis for V such that T (vi) = λvi, then
clearly

[T ]β =

λ1 0
. . .

0 λn



Theorem 6.2. If T ∈ L(V ) has dimV distinct eigenvalues, then T is diagonalizable
if and only if there exists an ordered basis β for T consisting of eigenvectors of T .
Moreover, if T is diagonalizable, β = {v1, . . . , vn} is an ordered basis of eigenvectors,
and D = [T ]β , then D is a diagonal matrix and Dii is the eigenvalue corresponding to
vi.

This theorem is the natural conclusion of our discussion thus far.

Theorem 6.3. Let A ∈Mn(F). Then a scalar λ is an eigenvalue of A if and only if

det(A− λI) = 0

Proof. This is because λ is an eigenvalue if and only if (A − λI) is not invertible, which is
equivalent to saying det(A− λI) = 0. �

Definition 6.5 (Characteristic Polynomial). Let A ∈ Mn(F). The polynomial f(t) =
det(A− tI) is called the characteristic polynomial of A.

From this, we observe that eigenvalues of A are simply the zeros of its characteristic
polynomial. It is easily shown that similar matrices have the same characteristic polynomial,
since they have the same determinants. Therefore, this definition can be extended to linear
operators, irrespective of their basis. Try using the definition of characteristic polynomial,
as well as what you know about polynomials, to prove that A can have at most n distinct
eigenvalues.

Page 31



Notes on Linear Algebra Section 6

Definition 6.6. A polynomial f(t) in P(F) splits over F if there are scalars c, a1, . . . , an
such that it can be written as

f(t) = c(t− a1) · · · (t− an)

Theorem 6.3. The characteristic polynomial of any diagonalizable linear operator
splits.

Proof. Let T be a diagonalizable linear operator on V , and let β be an ordered basis such
that [T ]β is a diagonal matrix. It is easy to see that

f(t) = det(D − tI) = (λ1 − t) · · · (λn − t) = (−1)n(t− λ1) · · · (t− λn)

�

From this, it is clear to see that if T does not have distinct eigenvalues, then there will
be repeated zeros in the characteristic polynomial of T . Note that the converse is false; a
polynomial that splits does not guarantee diagonalizability.

Definition 6.7. Let λ be an eigenvalue for an operator/matrix with characteristic polyno-
mial f(t). The multiplicity of λ is the largest positive integer k for which

(t− λ)k

is a factor of f(t).

If T is diagonalizable, then there is an ordered basis consisting of its eigenvectors. We
know from Theorem (6.3) that [T ]β has its eigenvalues along its diagonal. Therefore, because
f(t) = det([T ]β−λI), it is clear that an eigenvalue must manifest on the diagonal exactly as
many times as its multiplicity. Thus, β contains as many linearly independent eigenvectors
corresponding to the same eigenvalue as its multiplicity.

Definition 6.8. Let T ∈ L(V ) with an eigenvalue of λ. The eigenspace of T corresponding
to λ is defined as

E(λ, T ) = ker(T − λI)

Theorem 6.4. Let T ∈ L(V ), and let λ be an eigenvalue of T with multiplicity m. Then

1 ≤ dimE(λ, T ) ≤ m

Proof. We know that the eigenspace must be of demension at least one, otherwise there
would be no vector v 6= 0 such that (T − λI)(v) = 0, so by definition λ is not an eigenvalue
of T .

For the other side of the inequality, pick a basis {v1, . . . , vp} for E(λ, T ), where p is the
dimension of E(λ, T ). Complete it into a basis β for V . Let A = [T ]β . observe that for
1 ≤ i ≤ p, vi is an eigenvector of T corresponding to λ. Therefore, A can be written as:[

λIp B
O C

]
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The characteristic polynomial is thus

f(t) = det(A− tI) = det((λ− t)Ip) det(C − tIn−p) = (λ− t)pg(t)

Where g(t) is some other polynomial. Therefore, the multiplicity of λ is at least p (g(t)
could theoretically have another factor of (λ− t)). However, dim(E(λ, T )) is p. Thus

1 ≤ dimE(λ, T ) ≤ m

as desired. �

These results lead to a crucial theorem in determining if a matrix is diagonalizable:

Theorem 6.4. Let T ∈ L(V ) such that the characteristic polynomial of T splits. Let
λ1, . . . , λk be the distinct eigenvalues of T . Then

1. T is diagonalizable if and only if the multiplicity of λi is equal to dimE(λi, T )
for all i.

2. If T is diagonalizable, and βi is a basis for E(λi, T ) for each i, then β = β1∪· · ·∪βk
is an ordered basis for V consisting of eigenvectors of T .

Proof. Suppose T is diagonalizable. We know that di = E(λi, T ) ≤ mi, where mi is the
multiplicity of λi. Let β be a basis of eigenvectors for V . For each i, let βi = β ∩ E(λ, T ),
the set of vectors in β that are eigenvectors corresponding to λi. Clearly, the vectors in
βi are linearly independent in a space of dimension di. The cardinality of βi, deonoted by
ni, is less than di for each i because βi is a linearly independent subset of a subspace of
dimension di, and di ≤ mi. The ni’s sum to n because β contains n vectors. Expressed as
a sum,

n =

k∑
i=1

ni ≤
k∑
i=1

di ≤
k∑
i=1

mi = n

It follows that
k∑
i=1

(mi − di) = 0

But since (mi − di) ≥ 0 for all i, we conclude that mi = di.
Conversely, assume the characteristic polynomial of T splits and that mi = di. For each

i, take an ordered basis βi corresponding to E(λi, T ), the cardinalities of which are di = mi.
and let beta = β1 ∪ · · · ∪ βk. We know that β is linearly independent, because eigenvectors
corresponding to distinct eigenvalues are linearly independent. Furthermore, β contains

k∑
i=1

di =

k∑
i=1

mi = n

vectors. Therefore, β is an ordered basis for V consisting of eigenvectors of V . �
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Theorem 6.5. Suppose T ∈ L(V ), where V is finite-dimensional. suppose that λ1, . . . , λk
are distinct eigenvalues of T . Then

E(λ1, T )⊕ · · · ⊕ E(λk, T )

is a direct sum. Furthermore,

dimE(λ1, T ) + · · ·+ dimE(λk, T ) ≤ dimV

Proof. Suppose
u1 + · · ·+ uk = 0,

where each ui is in E(λi, T ). Because eigenvectors corresponding to distinct eigenvalues are
linearly independent, this implies that each uj = 0 because each sum can only be written
in one way as a sum of u1, . . . , uk. �

Lemma 6.1. If V = W1 ⊕ · · · ⊕Wk, and βi is a basis for Wi, then β = β1 ∪ · · · ∪ βk is a
basis for V .

Now we can neatly summarize equivalent conditions to diagonalizability:

1. T is diagonalizable;

2. V has a basis consisting of eigenvectors of T ;

3. The characteristic polynomial of T splits and for each eigenvalue of T , the multiplicity
of λ equals n− rank(T − λI)

4. V = E(λ1, T )⊕ · · · ⊕ E(λk, T );

5. dimV = dimE(λ1, T ) + · · ·+ dimE(λk, T );

One important use for diagonalizing a matrix is computing matrix limits. For instance,
if A = PDP−1, then it becomes remarkably simple to compute any power of the matrix:

Am = P−1

λ
m
1 0

. . .

0 λmk

P
Once we do that, we are able to more readily compute polynomials of matrices and of

linear transformations:
p(A) = a0I + a1A+ · · ·+ anA

n

If A is diagonalizable, then

p(A) = P−1

p(λ1) 0
. . .

0 p(λk)

P
In fact, we can define f(A) for any f that is a power series that is convergent; e.g.,

eA =

∞∑
k=0

Ak

k!
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Which, if A is diagonalizable, is just

P−1

e
λ
1 0

. . .

0 eλk

P
Another use of diagonal matrices is for solving systems of differential equations.

6.3 Similarity Invariants

We have talked about how the similarity transformation

A→ P−1AP

preserves many properties of A, in particular its eigenvalues, characteristic polynomial, and
determinant. If two matrices are similar, it means they represent the same transformation
in a different basis, which comes from the fact that

det(P−1AP ) = det(A)

from which we were able to compute the characteristic polynomial and eigenvalues.
Another important invariant is the so-called “trace” of a matrix. It is the function

Tr :Mn(F)→ F defined by:

Tr(A) =

n∑
i=1

aii

Or the sum along the diagonals of a matrix. It is easy to show that Tr(AB) = Tr(BA):

Tr(AB) =

n∑
i=0

n∑
j=0

aijbji

Tr(BA) =

n∑
i=0

n∑
j=0

bijaji

Without loss of generality, we are able to switch the i’s and j′s to get

Tr(BA) =

n∑
j=0

n∑
i=0

aijbji

As a consequence, we have

Tr(P−1AP ) = Tr(AP−1P ) = Tr(A)

So trace is another property of the matrix that is invariant under similarity transformations.
It is independent from the choice of basis.

In particular, if the characteristic polynomial of A splits, we can see through judicious
choice of P that:

Tr(A) =

n∑
i=0

λi
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Where the λ′is are not necessarily distinct. Similarly, for the determinant, we have

det(A) = det(P−1) det(D) det(P ) =

n∏
i=0

λi

This means that given any matrix at all, we are immediately able to find the sum and
product of its eigenvalues by taking the trace and determinant, respectively, no change of
basis needed. Because we have 2 equations, it becomes especially easy to solve for the
eigenvalues for a 2× 2 matrix, such that we simply need to solve the quadratic equation

x2 − Sx+ P = 0

Where S and P are the sum and product of the eigenvalues, respectively.

6.4 Matrix Limits and Markov Chains

In this section we are concerned with finding the limits of matrices:

lim
m→∞

Am

Recall that if you have a scalar λ, its limits will be

Condition Limit

|λ| < 1 0
λ = 1 1
λ > 1 +∞
λ ≤ −1 no limit

As we saw before, the powers of a matrix are really dictated by the behavior of its eigenval-
ues in diagonal form; therefore, understanding the eigenvalues is key in understanding the
limiting behavior of matrix powers.

When we iterate multiplications of A, it is called a dynamical system. The long-term
behavior of such a system can be characterized as follows.

Theorem 6.6. Let A ∈Mn(F) such that A is diagonalizable. The limit of

lim
m→∞

Am

exists or converges if and only if for every eigenvalue, −1 < λi ≤ 1.

Proof. This follows from our computations involving powers of diagonal matrices. �

Definition 6.9 (Probability Vector). A column vector x is a probability vector if all its
entries are greater than zero, and all of its entries sum to 1.

Definition 6.10 (Transition Matrix/Stochastic Matrix). A matrix M is called a transition
matrix if all its entries are nonnegative and each of its columns separately sum to 1.
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Theorem 6.7. Let u be the vector whose entries are all 1, and M be a transition matrix.
then

M tu = u

In other words, U is an eigenvector of M whose eigenvalue is 1. This is also the case
for M , because transpose matrices share the same characteristic polynomial and therefore
eigenvalues.

Theorem 6.8. Let M be a transition matrix. Then:

1. 1 is always an eigenvalue of M

2. The rest of the eigenvalues satisfy |λ| < 1.

With these ideas in mind, we are able to study how linear systems evolve, and their long-
term behavior. The transition matrix dictates how a given probability vector will evolve in
the next step in the evolution; the probability vector gives the states of the system, with the
corresponding probabilities in each slot of the vector (e.g., what proportion of a population
lives in the city vs. the suburbs, if every year proportions of the population change their
residences).

If we have an evolutionary process that only depends on the current state (and not on
the time, earlier states, or other factors), then we have what is called a Markov Process. If,
in particular, the number of states is finite, then we have what is known as a Markov Chain.

If for every step in the process, we evolve the probability vector by the transition matrix
M , the long-term behavior of the system can be modeled by taking the limit of our initial
state:

lim
k→∞

Mkx0 = xs

Where xs is known as the steady-state distribution, such that

Mxs = xs

if the limit exists, of course. Remarkably, it can be shown that the steady state does not at
all depend on the initial conditions x0; only on the transition matrix!

More generally, dynamical systems involve nonlinear operations, but we still have to
understand the eigenvalues of the linearized operators. For instance, if you have a map

φ : Rn → Rn

which is non linear, then the differential of the map at some steady-state xs is linear:

Dφ(xs).

By understanding the eigenvalues of that map, we can understand the stability of our state
over time.

6.5 The Cayley-Hamilton Theorem

Definition 6.11 (Invariant Subspace). Suppose T ∈ L(V ). A subspace U of V is called
T -invariant if u ∈ U implies Tu ∈ U .

You should verify that the following are all invariant subspaces:
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1. {0};

2. V ;

3. kerT ;

4. ImT ;

5. E(λ, T ), for evert eigenvalue λ of T .

As we can see, a one-dimensional invariant subspace gives rise to the notion of an eigen-
value.

Definition 6.12. If a subset U of V is T -invariant, then we can define the restriction
operator T |U ∈ L(U) by:

T |U (u) = Tu

for all u ∈ U .

Essentially, we are resetricting the domain of T to U ; this remains a linear operator
because no operations on u ever leave U . It is an operator in a lower-dimensional space.

In matrix form, if we have β be a basis for U completed into a basis for V , then we have
a matrix of the form

[T ]β =

[
T |U B
O C

]
Where the left part determines what T does to U , and the right part is the complement

of U ; the upper part is represented in the basis for U , and the lower part is represented in
the basis we used to complete β. Notice how the lower-left part is necessarily 0; because U
us T -invariant, it will always be able to be represented in the basis for U and cannot use
basis vectors from the complement. In other words, it is upper triangular by blocks.

The ideal situation is to put the matrix in blocks such that

[T ]β =

[
T |U O
O C

]
This can only be done if the complement of U is also T -invariant, which generally isn’t the
case.

Regardless, the effectiveness of this form is that the characteristic polynomial is simply

f(t) = det(T − tI) = det(T |U − tI) det(C − tI)

Which means
f(t) = fT |U (t) det(C − tI)

Where fT |U (t) is the characteristic polynomial of the operator T restricted to U . This lead
us to a new theorem.

Theorem 6.9. If U is a T -invariant subspace of V , then the characteristic polynomial for
T |U , fT |U (t), divides the characteristic polynomial of T .

Corollary 6.10. Any root of fT |U (t) is also a root of f(t), and every eigenvalue of T |U is
an eigenvalue of T with multiplicity less than or equal to that for T .

Next, we move on to the notion of a cyclic subspace.
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Definition 6.13. Let T ∈ L(V ), and x ∈ V . Then the subspace

W = span(x, T (x), T 2(x), . . . )

is called the T -cyclic subspace of V generated by x.

Lemma 6.2. Let W be the T -cyclic subspace of V generated by x. Then W is the smallest
subspace of V that is T -invariant that contains x. That is, for U that is T invariant and
contains x, W ⊆ U .

Proof. If U is T invariant and contains x, it must contain T (x), T 2(x), . . . ; because the span
is the smallest subset with all those vectors in it, then W ⊆ U . �

Theorem 6.11. Let T ∈ L(V ), and x ∈ V , and k = dimW ≤ dimV where W is the
T-cyclic subspace of V generated by x. Then

1. {x, T (x), . . . , T k−1(x)} is a basis for W ;

2. If
a0x+ a1T (x) + · · ·+ ak−1T

k−1(x) + T k(x) = 0,

then the characteristic polynomial of T |W is

f(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk)

Proof. 1. For x 6= 0, let j be the largest positive integer for which

β = {x, T (x), . . . , T j−1(x)}

is linearly independent. Such a j must exist, because V is finite-dimensional. Let
Z = span(β), so β is a basis for Z. Furthermore, T j(x) ∈ Z, because it is linearly
dependent on other vectors in β.

We show that Z is T -invariant. Let w ∈ Z:

w = b0x+ · · ·+ bj−1T
j−1(x)

Applying T to both sides,

T (w) = b0T (x) + · · ·+ bj−1T
j(x)

Therefore, T (w) is a linear combination of vectors in Z, so Z is T -invariant.

Furthermore, we know that because Z is T invariant and contains x, W ⊆ Z from the
lemma we proved above. However, it is obvious that Z ⊆W , because W contains the
first j powers of iterated T operations on x.

Therefore, W = Z. It follows that β is a basis for W , so

dim(W ) = j = k

as desired.
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2. View β from above as an ordered basis for W . Let ai be scalars such that

a0x+ · · ·+ ak−1T
k−1(x) + T k(x) = 0

Observe that

[T |W ]β =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
...

...
. . .

...
...

0 0 . . . 1 −ak−1


which has the characteristic polynomial

f(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk)

as desired.
�

Next comes an incredibly important result:

Theorem 6.5 (Cayley-Hamilton). Let T ∈ L(V ), and let f(t) be the characteristic
polynomial of T . then

f(T ) = 0

in other words, T is a solution to its own characteristic polynomial.

Proof. In order to do this, we must prove that f(T )(x) = 0 for all x ∈ V . Clearly, this
occurs when x = 0.

For x 6= 0, let W be the T -cyclic subspace of dimension k generated by x. By the
previous theorem, there exist scalars such that

a0x+ · · ·+ ak−1T
k−1(x) + T k(x) = 0

Hence,
g(t) = (−1)k(a0 + · · ·+ ak−1t

k−1 + tk)

Is the characteristic polynomial of T |W . Combining these two, we get

g(T )(x) = (−1)k(a0 + · · ·+ ak−1T
k−1 + T k)(x) = 0

We know that g(t) divides f(t) from Theorem 6.12; therefore T is a root of f(t). �

Theorem 6.12. Let T ∈ L(V ), and suppose that V = W1 ⊕ · · · ⊕Wk, where each Wi is a
T invariant subspace. Then the characteristic polynomial of T is

k∏
i=0

fi(t)

where fi(t) is the characteristic polynomial of T |Wi .
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Proof. If we have these subspaces we can make a basis such that

β =

k⋃
i=0

βi

i.e., by uniting bases for each Wi. Therefore, the matrix is of the form

[T ]β =

 T |W1
O O

O
. . . O

O O T |Wk


Where each segment is in block form. The characteristic polynomial is simply the product
of the determinants of the blocks minus tI—which is the characteristic polynomial of T .

�
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7 Inner Product Spaces

Most applications of linear algebra involve some kind of measurement. In this section, we
generalize the notion of length into a much richer theory of inner products.

7.1 Inner Products and Norms

We begin with the definition of the inner product:

Definition 7.1. An inner product on V is a function that takes each ordered pair (u, v) of
elements in V to a scalar 〈u, v〉 ∈ F and satisfies the properties for all x, y, z ∈ V and all
λ ∈ F:

1. 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉.

2. 〈λx, y〉 = λ〈x, y〉.

3. 〈x, y〉 = 〈y, x〉.

4. 〈x, x〉 > 0 if x 6= 0.

5. 〈x, x〉 = 0 if and only if x = 0.

Definition 7.2. An inner product space is a vector space V that is endowed with an inner
product on V .s

Definition 7.3. (Canonical Inner Products) The canonical inner product for x, y in Rn and
Cn is sometimes called the dot product, and is computed by

〈x, y〉 =

n∑
i=1

xiyi

where xi is the ith component, and we multiply it with the corresponding complex conjugate.
Note in Rn this reduces to taking the product of each component.

You should verify that this is indeed an inner product defined on both Rn and Cn.

Definition 7.4. Let A ∈ Mm×n(F). We define the adjoint of A to be the n ×m matrix
A∗ such that (A∗)ij = Aji for all i, j (i.e., the conjugate transpose).

We can now define the canonical inner product for matrices:

Definition 7.5 (Frobenius Inner Product). Let V =Mn(F), and define for A,B ∈ V

〈A,B〉 = Tr(B∗A)

This is an inner product defined on the space of n× n matrices.

From the definition of inner products, we can draw the following useful conclusions:

Theorem 7.1. Let V be an inner product space. Then, for all x, y, z ∈ V and all λ ∈ F,
the following statements are true:

1. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
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2. 〈x, λy〉 = λ〈x, y〉.

3. 〈x, 0〉 = 〈0, x〉 = 0

4. If 〈x, y〉 = 〈x, z〉, for all x ∈ V , then y = z.

Definition 7.6 (Orthogonality). We say x, y ∈ V are orthogonal with respect to the inner
product on V if

〈x, y〉 = 0

The last statement of the above theorem is essentially equivalent to saying that if 〈x, y〉 =
0∀x ∈ V , then y = 0, which is also equivalent to saying that the only vector that is orthogonal
to all other vectors in V is 0.

Note that a vector space can be equipped with many inner products; there are an infinite
number of them., so we must specify which one we are using. Sometimes, it’s even beneficial
to play with two inner products at the same time. However, different inner products give
different notions of orthogonality.

Now, we will see how each inner product determines a norm:

Definition 7.7 (Norm). Let V be an inner product space. For x ∈ V , the norm is defined
by

‖x‖ =
√
〈x, x〉

Notice how for the canonical inner product on Rn, the norm is simply the Euclidean
distance from the origin of a certain vector.

Next, the nice properties we might be familiar with from Euclidean norms generalize:

Theorem 7.2. Let V be an inner product space over F. Then, for all x, y ∈ V and λ ∈ F,
the following hold:

1. ‖λx‖ = |λ| · ‖x‖;

2. ‖x‖ = 0 if and only if x = 0. In any case, ‖x‖ ≥ 0;

3. ‖x+ y‖2 = ‖x‖2 + ‖y‖2 (Pythagorean Theorem, for Real Spaces);

4. |〈x, y〉| ≤ ‖x‖‖y‖ (Cauchy-Schwarz Inequality);

5. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle Inequality).

Proof. Numbers (1) and (2) are obvious, and both follow from the definition of a norm.
The Pythagorean theorem is proved by definitions:

‖x+ y‖2 = 〈u+ v, v + u〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2

Cauchy-Schwarz is proved by the following:
If y = 0, then the equality is fulfilled. Assume y 6= 0; For any λ ∈ F, we have

0 ≤ ‖x− λy‖2 = 〈x− λy, x− λy〉
= 〈x, x〉 − λ〈x, y〉 − λ〈y, x〉+ λλ〈y, y〉
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If we set

λ =
〈x, y〉
〈y, y〉

the inequality becomes

0 ≤ 〈x, x〉 − |〈x, y〉|
2

〈y, y〉
from which (4) follows.

To prove the triangle inequality, we have

‖x+ y‖2 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 2R(〈x, y〉) + ‖y‖2

≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2

where the fourth line follows from the Cauchy-Schwarz inequality. �

For mathematicians, these properties (minus the Cauchy-Schwarz Inequality) constitute
what defines a norm. In fact, a norm can even be defined without an inner product, but
that is out of scope for now.

Definition 7.8 (Orthogonal Sets). A subset S of V , where V is an inner product space, is
said to be orthogonal if any two distinct vectors in S are orthogonal. A subset S of V is
said to be orthonormal if S is orthogonal and ‖s‖ = 1 for all s ∈ S.

Equivalently, S is orthonormal if and only if 〈si, sj〉 = δij .

7.2 The Gram-Schmidt Procedure and Orthogonal Complements

Definition 7.9. Let V be an inner product space. Then a subset of V is an orthonormal
basis for V if it is an ordered basis that is orthonormal.

Theorem 7.3 (Gram-Schmidt). Let V be an inner product space, and S = {wi, . . . , wn}
be a linearly independent subset of V . Let S′ = {v1 . . . vn}, where v1 equal w1 and

vk = wk −
k−1∑
j=1

〈wk, vj〉
‖vj‖2

vj

Then S′ is an orthogonal set of nonzero vectors such that span(S′) = span(S). In particular,
the set { v1

‖v1‖ , . . . ,
vn
‖vn‖} is an orthonormal set.

Before we prove this, it is helpful to supply some intuitoin. What we do is we assign v1
to w1, and then project v1 onto w2; we then remove the orthogonal projection of w2 that
lies in the direction of v1. In general, we remove the component of wi that is orthogonally
projected onto the span of the previous v’s.

Lemma 7.1. The coordinates of a vector y ∈ V in an ordered orthogonal basis β of V is

yi =
〈y, βi〉
‖βj‖2

where yi is the ith entry, and βi is the ith orthonormal basis vector.
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Proof. Because y ∈ span(β), y can be written as a linear combination of βi’s:

y =
∑

aiβi

To isolate each aj , we simply take the product with each vj :

〈y, βj〉 = 〈a1β1, βj〉+ · · ·+ 〈anβn, βj〉

However, for i 6= j, the βi’s are orthogonal to βj ; therefore, we are only left with

aj〈βj , βj〉 = aj‖βj‖2

�

Corollary 7.4. An orthogonal set is linearly independent.

It becomes apparent that in the Gram-Schmidt procedure, we can see that we are essen-
tially removing the coordinates that have already been expressed. We may now prove the
Gram-Schmidt procedure.

Proof. The proof proceeds by induction on n. If n = 1, then clearly the S is linearly
independent, because w1 6= 0. Setting v1 = w1, the theorem holds.

Assume it holds up to n − 1. S′k−1 = {v1, . . . , vk−1} is an orthonormal set. If vk = 0,
then that implies that wk ∈ span(S′k−1) = span(Sk−1), which can’t occur because Sk was
taken to be a linearly independent set.

It follows that

〈vk, vi〉 = 〈wk, vi〉 −
k−1∑
j=1

〈wk, vj〉
‖vj‖2

〈vj , vi〉

= 〈wk, vi〉 −
〈wk, vi〉
‖vi‖2

〈vi, vi〉

= 0

Because vk is orthogonal to all vi, where i < k, then S′k is an orthogonal set.
Now we show that span(S′k) = span(Sk). As we have seen before, the vk’s are in the

span of the wk’s, so
span(S′k) ⊆ span(Sk)

However, from corollary 7.4, we know that S′k is a linearly independent set with k vectors.
Therefore

dim(span(S′k)) = dim span(Sk) = k

Therefore
span(S′k) = span(Sk)

as desired. �

Corollary 7.5. Every finite-dimensional inner product space has an orthonormal basis.

Corollary 7.6. Let V be a finite-dimensional inner product space, with an orthonormal
basis β = {v1, . . . , vn}. Let T be a linear operator on V , and let A = [T ]β . Then

Aij = 〈T (vj), vi〉.
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Definition 7.10. Let β be an orthonormal subset (possibly infinite) of an inner product
space V , and let x ∈ V . We define the Fourier Coefficients of x relative to β to be the
scalars 〈x, y〉 where y ∈ β.

This is most commonly used for functions on an interval with the inner product∫ 2π

0

f(x)g(x)dx

onto the basis
(cosnt, sinnt)

or, more generally,

cn =
1

2π

∫ 2π

0

f(x)e−inxdx

for a function f .

Definition 7.11. Let S be a nonempty subset of an inner product space V . We dedfine
S⊥ (read “S perp”) to be the set of all vectors in V that are orthogonal to every vector in
S.

S⊥ = {x ∈ V : 〈x, y〉 = 0,∀y ∈ S}
You should verify that S⊥ is a linear subspace.

Theorem 7.7. Let W be a finite-dimensional subspace of the inner product space V . Then
∀y ∈ V , there exist unique vectors u ∈W and z ∈W⊥ such that y = u+ z.

This means that V = W ⊕W⊥; moreover, if {v1, . . . , vk} are an orthonormal basis for
W , then

u =

k∑
j=0

〈y, vi〉vi

Proof. Let {v1, . . . , vk} be an orthonormal basis for W , and let u be defined in the preceeding
manner, and let z = y − u. Clearly u ∈W and y = u+ z.

To show that z ∈W⊥, it suffices to show that z is orthogonal to each vj .
Via computation, we see that

〈z, vj〉 = 0

To show uniqueness, we prove in the standard manner. This completes the proof. �

Corollary 7.8. u is the unique vector in W that is “closest” to y; that is, for any x ∈W ,

‖y − x‖ ≥ ‖y − u‖
And this is an equality if and only if x = u.

Theorem 7.9. Suppose that S = {v1, . . . , vk} is an orthonormal set for an n-dimensional
inner product space V . Then:

1. S can be extended into an orthonormal basis {v1, . . . , vk, vk+1, . . . , vn} for V ;

2. If W = span(S), then S1 = {vk+1, . . . , vn} is an orthonormal basis for W⊥.

3. If W is any subspace of V , then dimV = dimW + dimW⊥.

Proof. (1) can be proven by the completion theorem, and then it can be made into an
orthonormal set via Gram-Schmidt.

(2) Trivial.
(3) Recall that V = W ⊕W⊥, so the dimensions are additive. �

Page 46



Notes on Linear Algebra Section 7

7.3 Adjoint of a Linear Operator

Theorem 7.10. Let V be a finite-dimensioal inner product space over F, and let g : V → F
be a linear transformation. Then there exists a unique vector y ∈ V such that

g(x) = 〈x, y〉

for all x ∈ V .

Proof. Let β = {v1, . . . , vn} be an orthonormal basis for V , and let

y =
∑

g(vi)vi

Define h(x) = 〈x, y〉, which is clearly linear. Furthermore, we have

h(vj) = g(vj)

Since h and g both agree on β, and they are both linear, and any vector can be expressed
as a linear combination of basis vectors, we have g = h.

Uniqueness is proven in the traditional manner. �

Theorem 7.11. Let V be a finite-dimensional inner product space and let T ∈ L(V ). Then
there exists a unique function T ∗ : V → V such that

〈T (x), y〉 = 〈x, T ∗(y)〉

for all x, y ∈ V .

Proof. Let y ∈ V , define the functional g : V → F by

g(x) = 〈T (x), y〉

for all x ∈ V . First we show that g is linear, done by the usual method.
We know from theorem 7.10 that we can obtain a unique vector y′ ∈ V such that

g(x) = 〈x, y′〉; that is, 〈T (x), y〉 = 〈x, y′〉 for all x ∈ V . Defining T ∗ : V → V by T ∗(y) = y′,
we have

〈T (x), y〉 = 〈x, T ∗(y)〉
as desired. Linearity can be proven in the usual manner. �

Theorem 7.12. Let V be a finite-dimensional inner product space and let β be an or-
thonormal basis for V . If T is a linear operator on V , then

[T ∗]β = [T ]∗β

Where ∗ denotes conjugate transposition for a matrix.

Theorem 7.13. The following properties hold for both linear operators and matrices:

1. (T + U)∗ = T ∗ + U∗;

2. (cT )∗ = cT ∗ for any c ∈ F;

3. (TU)∗ = U∗T ∗;

4. T ∗∗ = T ;

5. I∗ = I.
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7.4 Normal and Self-Adjoint Operators

Lemma 7.2. Let T ∈ L(V ), and V be a finite-dimensional inner product space. If T has
an eigenvector, so does T ∗.

Proof. Suppose that v is an eigenvector with corresponding eigenvalue λ. Then, for any
x ∈ V ;

0 = 〈0, x〉 = 〈(T − λI)(v), x〉 = 〈v, (T − λI)∗(x)〉 = 〈v, (T ∗ − λI)(x)〉 = 0

Hence, v is orthogonal to the range of T ∗ − λI, so it is not onto nd hence not one-to-one.
Therefore there exists an eigenvector with corresponding eigenvalue λ. �

Theorem 7.1 (Schur’s Theorem). Let T ∈ L(V ), where V is a finite-dimensional inner
product space. Suppose the characteristic polynomial of T splits; then there exists an
orthonormal basis β for V such that [T ]β is upper triangular.

Proof. The proof proceeds by mathematical induction on n = dimV . The result is imme-
diate if n = 1.

Suppose, then, that Schur’s theorem holds for (n− 1)-dimensional inner product spaces
whose characteristic polynomials split. By the lemma, we assume that T ∗ has a unit eigen-
vector z. Suppose that T ∗(z) = λz and that W = span(z). We show that W⊥ is T -invariant.
If y ∈W⊥, and x = cz ∈W , then

0 = 〈y, z〉 = 〈y, T ∗(z)〉 = 〈T (y), z〉 = 0

Therefore, T (y) is in W⊥, so it is T -invariant.
We know that dimW = 1, so dimW⊥ = n − 1. From what we have seen before, the

characteristic polynomial of T |W⊥ divides the characteristic polynomial of T ; by what we
assumed by induction, the characteristic polynomial of an (n− 1)-dimensional space splits.
We find a basis γ such that T |W⊥ is upper triangular.

Let β = γ ∪ {z}. In this orthonormal basis, [T ]β is upper triangular, as desired. �

Definition 7.12. We say an operator T is normal if

TT ∗ = T ∗T

and similarly for matrices.

In general, this is not the case.

Example. Let T : R2 → R2 be a rotation by θ, where 0 < θ < π. The matrix representation
in the canonical basis is:

A =

[
cos θ − sin θ
sin θ cos θ

]
Note that AA∗ = I = A∗A; it normal. Moreover, the adjoint of a rotation operator is its
own inverse.

Example. An interesting example is that of the symmetric matrix, such that A = At; over
the real numbers, such a matrix equals its adjoint; this is known as a hermitian operator
and it is normal.

Another interesting case is for real skew-symmetric matrices; that is, At = −A. Then A
is normal because both AAt and AtA are equal to −A2.
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Theorem 7.2. The following are properties of normal operators:

1. ‖T (x)‖ = ‖T ∗(x)‖ for all x ∈ V ;

2. T − λI is normal for all c ∈ F;

3. If x is an eigenvector of T with eigenvalue λ, then x is also an eigenvector of T ∗

with eigenvalue λ.

4. If λ1 and λ2 are distinct eigenvalues of T with corresponding eigenvectors x1 and
x2, then x1 and x2 are orthogonal.

Theorem 7.3. Let T ∈ L(V ), and V be a finite-dimensional complex inner product
space. Then T is normal if and only if there exists an orthonormal basis for V consisting
of eigenvectors of T .

That is, T can be diagonalized in an orthonormal basis of eigenvectors.

Proof. If T can be diagonalized in an orthonormal basis β, then [T ∗]β has the conjugate
eigenvalues on the diagonals. Therefore, the product of the matrices commute; moreover,

[T ∗T ]β = [TT ∗]β

Therefore T is normal.
Convresely, if T is normal in a complex inner product space, then the characteristic poly-

nomial of T must split. By Schur’s theorem, there is an orthonormal basis β = {v1, . . . , vn}
such that [T ]β is upper triangular. In particular, the first column of [T ]β is an eigenvalue;
[T ]β(v1) = [T11]β . Let k ≤ n be the maximal number such that {v1, . . . , vk−1} are eigenvec-
tors of T .

For all j ≤ k − 1, T (vj) = λjvj , so T ∗(vj) = λjvj , so vj is also an eigenvector for T ∗.
Let us compute T (vk):

T (vk) =

k∑
j=1

〈T (vk), vj〉vj

However, all the coefficients in the sum are 0:

〈T (vk), vj〉 = 〈vk, λjvj = λj〈vk, vj〉 = 0

Thus, T (vk) = 〈T (vk), vk〉vk, so T (vk) = λkvk.
This can be proven up to n, so {v1, . . . , vn} are all eigenvectors. �

This means that all self-adjoint (Hermitian) matrices—complex matrices such that A =
A∗—can be diagonalized.

Definition 7.13. Let T ∈ L(V ), where V is finite dimensional and an inner product space.
We say that T is self-adjoint or Hermitian if T ∗ = T .

Lemma 7.3. Let T be a self-adjoint linear operator on a finite-dimensional inner product
space V . then
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1. Every eigenvalue of T is real;

2. If V is a real inner product space, then the characteristic polynomial of T splits.

Proof. If x is an eigenvector for T , then it is also an eigenvector of T ∗.

λx = Tx = T ∗x = λx

Therefore, λ = λ, so it is real.
Next, see [T ] as a matrix with complex entries. Therefore, T splits over C, but because

it is self-adjoint, its eigenvalues are real. Therefore, the characteristic polynomial splits over
R. �

Now, we turn to one of the most important theorems covered in these notes: [MARK
FOR BOXING]

Theorem 7.4. Let T ∈ L(V ) where V is a finite-dimensional real inner product space.
Then T is self-adjoint if and only if there exists an orthonormal basis β consisting of
eigenvectors of T .

Proof. Suppose there exists such a β. Then [T ]β is diagonal, but [T ∗]β is also diagonal;
because the eigenvalues are real, so T ∗ = T .

Next, by the previous lemma, if T is self-adoint, then its characteristic polynomial splits.
By Schur’s theorem, [T ]β is upper triangular, and by assumption so is [T ∗]β . On the other
hand, [T ∗]β = [(T t)∗]β because it is self-adjoint and real. Therefore, this can only occur if
[T ]β is diagonal, as desired. �

All the theorems we have seen about adjoints and diagonalizing/triangularizing are true
for matrices. However, we don’t need to define an inner product, because we can technically
define them in terms of transposition and conjugation.

This arises from the fact that there is an implicit inner product for matrices, wich is the
canonical one:

〈x, y〉 =
∑

xiyi

In particular, you would find
〈x,Ay〉 = 〈A∗x, y〉

If x, y are column vectors in Fn, then their inner product is just

xty

Then
〈x,Ay〉 = xtAy = xtAy = 〈(A∗x)t, y〉

7.5 Unitary and Orthogonal Operators

We have seen that normal operators and matrices on a complex inner product space are
diagonalizable on an orthonormal basis.
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Definition 7.14. Let T ∈ L(V ), where V is finite-dimensional. If

‖T (x)‖ = ‖x‖

for all x ∈ V , then we call T a unitary operator if F = C, and an orthogonal operator if
F = R.

Note that in the infinite-dimensional case, an operator satisfying these conditions is
generally called an isometry.

Theorem 7.5. The following conditions are equivalent:

1. TT ∗ = T ∗T = I (T ∗ = T−1);

2. 〈T (x), T (y)〉 = 〈x, y〉 for all x, y ∈ V ;

3. If β is an orthonormal basis for V , then T (β) is an orthonormal basis for V ;

4. There exists an orthonormal basis β for V such that T (β) is an orthonormal basis
for V .

5. ‖T (x)‖ = ‖x‖ for all x ∈ V .

Remark. T is orthogonal if and only if its eigenvalues satisfy |λi| ≤ 1

Definition 7.15. A matrix A is orthogonal if AtA = AAt = I (real case), and unitary
A∗A = AA∗ = I (complex case).

A matrix is unitary/orthogonal if its column vectors form an orthonormal basis for the
canonical inner product. This proposition can be checked computationally.

We learned that self-adjoint or Hermitian linear maps can be diagonalized in an or-
thonormal basis. For a matrix, that means

A = P−1DP

Where D is a diagonal matrix; this gives you the coordinates of the new matrix in terms of
the old ones (or vice versa). Here, the new basis is orthonormal, whereas the old basis was
the canonical one. Therefore, P must be an orthogonal/unitary matrix. Hence, P ∗P = I
and P−1 = P ∗. Thus, A can be written as

A = P ∗DP

This leads to the following definition:

Definition 7.16. We say that A and B are unitary equivalent matrices if there exists a
unitary/orthogonal transformation P such that

A = P ∗BP

Therefore, we see that normal/self-adjoing matrices are unitarily equivalent to diagonal
matrices. This is actually an equivalence relation:
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Theorem 7.6. A is a normal/self-adjoint operator if and only if A is unitarily equiv-
alent to a diagonal matrix.

7.6 Bilinear and Quadratic Forms

For now, let V be an inner product space over the real numbers.

Definition 7.17. A function H : V × V → F is called bilinear if it is linear with respect to
each variable

An example of this is the scalar product over the real numbers. However, note that a
bilinear form does not always constitute an inner product.

How do we determine this bilinear form? Given a basis β = {v1, . . . , vn}, then:

x =
∑

xivi

y =
∑

yjvj

H(x, y) =
∑
i

∑
j

xiyjH(vi, vj)

Therefore the data of H(vi, vj) suffices to determine the bilinear form. This data has two
indecies, so we put it in an n× n matrix A where

Aij = H(vi, vj)

It can be seen that
H(x, y) = xtAy

This is an important formula, because it connects a bilinear form to the matrix that repre-
sents it.

Warning. Note—this is not the same as a matrix representing a linear map. Note that
the coordinates of the matrix A are no longer the images of the basis vectors after the
transformation.

We are now free to state some properties about bilinear forms:

Theorem 7.14. The following are properties for bilinear forms:

1. The set of all bilinear forms, denoted B(V ) on a vector space V is itself a vector space
(aH1 +H2 is also a bilinear form)

2. The aforementioned vector space of bilinear forms is of dimension n2, because B(V )
is isomorphic to a matrix of size n× n.

Now we can ask: how can we change the basis of a bilinear form? It turns out that
there’s a formula:

Theorem 7.15. If you have two bases β and γ, and Q = [I]γβ , then

ψγ(H) = Qtψβ(H)Q

Where ψ is the representation of the bilinear form in a specific basis. Here the relationship
between the matrices is called congruence. Note that Q must be invertible.
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Definition 7.18. We say that a bilinear form is symmetric if

H(x, y) = H(y, x)

It follows that the matrix that represents H is also symmetric.

7.6.1 Sesquilinear Forms

In the complex case, we define what are called sesquilinear forms.

Definition 7.19. A sesquilinear form is a map H : V × V → C such that it satisfies the
definition of a bilinear form except that

H(x, λy) = λH(x, y)

and
H(x, y) = H(y, x)

The matrix representing H is therefore self-adjoint.

7.6.2 Quadratic Forms

Definition 7.20. A function K : V → F is a quadratic form if

K(x) = H(x, x)

for some symmetric bilinear form H.

In coordinates, recall how the bilinear form was determined on the basis vectors. Simi-
larly, quadratic forms are written like:

K(x) =
∑
i

∑
j

xixjH(vi, vj)

Note that familiar conic sections are of the form

K(x) = c

Our goal is to write quadratic forms into the simplest way; that is, we prefer to have a sum
of squares.

Another thing to note is that if K is known, we can always recover H on which it is
based. In particular:

H(x, y) =
1

2
[K(x+ y)−K(x)−K(y)]

Which comes from how quadratic functions are expanded and reduced.
Now, reducing H to a sum of squares corresponds to finding a basis β for which its

matrix is diagonal. This is equivalent to a quadratic form.
If the bilinear form is symmetric (if not, we do not know much about it), then any matrix

representing it is also symmetric. But going back to what we know about matrices, we know
that its matrix can be diagonalized in an orthonormal basis, so it is congruent to a diagonal
matrix.

We can therefore conclude that up to a change of basis, the matrix representing H is
diagonal. This is called diagonalizing the bilinear form.
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Theorem 7.16. Every symmetric bilinear form is diagonalizable.

Moreover, if H(vi, vi) > 0, then we can set

wi =
vi

H(vi, vi)

Then
H(wi, wi) = 1.

If H(vi, vi) < 0,

wi =
vi

−H(vi, vi)

So then
H(wi, wi) = −1

Thus, any quadratic form can be written as a matrix with 1’s,-1’s, and 0’s along the
main diagonal and 0 everywhere else. This means that in the proper coordinates, they can
be written as

x21±, . . . ,±x2k
However, the number of +’s and −’s are always invariant. This property of quadratic forms
is known as the signature. If and only if they’re all 1’s, then

H(·, ·)

defines an inner product.
As a result, conics can always be written in the form

x21±, . . . ,±x2k = c
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8 Jordan Canonical Forms

When we cannot diagonalize a linear map, we still seek to put it in its simplest form (after
changing the basis.) The simplest possible form is the Jordan Canonical Form, which is
possible if the characteristic polynomial splits.

It is a matrix in block diagonal form:J1 0
. . .

0 Jk


Where each Ji is known as a Jordan Block, and is either of the form [λ] or

λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . λ


All λ are eigenvalues of T/A; in particular, a diagonal matrix is thus in Jordan block form.

Jordan block matries are upper triangular, so their determinats may easily be computed.
Notice how the form can be written as

λI +M

Where M is a matrix with 1’s shifted to the right of the diagonal. It is worth noting that
M is a nilpotent matrix; Mn is the zero map where n is the dimension of the matrix.

Therefore, the only eigenvalue of a nilpotent matrix is zero (otherwise, if there were
nonzero entries on the diagonal, in multiplication they would simply multiply with them-
selves).

Definition 8.1 (Generalized Eigenvectors). For a linear map T , a vector x is called a
generalized eigenvector of T for λ if there exists a positive integer p such that:

(T − λI)p(x) = 0

Note that this definition includes regular eigenvectors in the case p = 1. Moreover, λ is
an eigenvalue whose eigenvector is

(T − λI)p−1(x)

Definition 8.2 (Generalized Eigenspace). We then let

K(λ, T ) = {x ∈ V : (T − λ)p(x) = 0, p ∈ Z}

for some positive integer p.

Theorem 8.1. The generalized eigenspace has the following properties:

1. K(λ, T ) is T -invariant, and contains E(λ, T ).

2. For any µ 6= λ, the restriction of T − µI to K(λ, T ) is one-to-one.
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Theorem 8.2. Let T ∈ L(V ), where V is finite dimensional, such that the characteristic
polynomial of T splits. Suppose λ is an eigenvalue with multiplicity m. Then

1. dim(K(λ, T )) ≤ m;

2. K(λ, T ) = ker(T − λI)m.

Theorem 8.3. Let T ∈ L(V ), such that the characteristic polynomial of T splits. Let
λ1, . . . , λk be the distinct eigenvalues of T . Then for every x ∈ V , there exist generalized
eigenvectors vi ∈ K(λi, T ) such that

x = v1 + · · ·+ vk

Theorem 8.1. Let T ∈ L(V ), such that the characteristic polynomial of T splits. Let
λ1, . . . , λk be the distinct eigenvalues of T with multiplicity mi. Let βi be a basis for
K(λi, T ). Then

1. βi ∩ βj = ∅ for i 6= j.

2. β = β1 ∪ · · · ∪ βk is an ordered basis for V .

3. dimK(λi, T ) = mi.

Corollary 8.4. As a result, we observe that T is diagonalizable if and only if

E(λ, T ) = K(λ, T )

for every eigenvalue λ.

[THIS SECTION UNDER CONSTRUCTION]

8.1 The Minimal Polynomial

Recall how when we discussed linear maps, we considered linear maps in polynomials; that
is,

p(T ) = a0I + a1T + · · ·+ amT
m

We have seen that if fT is the characteristic polynomial of T , then T is a solution to its own
characteristic polynomial by the Cayley-Hamilton theorem. Note that this polynomial is of
degree n = dimV .

The question is, are there any other polynomials g(T ) such that g(T ) = 0? In short, yes:

Remark. The polynomial
g(t) = (h ◦ fT )(t)

also admits T as a solution.

Definition 8.3. A polynomial p is called the minimal polynomial of T if p(t) is a monic
polynomial of least positive degree for which

p(T ) = 0
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Note that monic simply means the leading coefficient is 1. We know that due to the
Cayley-Hamilton theorem, there exists an upper bound to this degree, namely n, so a
minimal polynomial does indeed exist.

Corollary 8.5. If g(T ) is a polynomial that “cancels” T , then p(t) must divide g(t). That
is,

g(t) = q(t)p(t)

Proof. We know that the degree of g must be greater than or equal to the degree of p,
otherwise we have a contradiction in our assumptions.

Therefore, we can do a euclidean division, to get g in the form

g(t) = q(t)p(t) + r(t)

We see that the degree of r is strictly less than the degree of p. Inputting T into the equation:

g(T ) = q(T )p(T ) + r(T )

Because g(T ) and p(T ) are both zero, we conclude that r(T ) is zero. But then r would be
a polynomial of smaller degree that cancels T , so we arrice at a contradiction, unless r is 0.
Therefore, there is no remainder, so

g(T ) = q(T )p(T )

�

Corollary 8.6. The minimal polynomial divides the characteristic polynomial.

If T is a linear operator, then its minimal polynomial is the same as the minimal poly-
nomial of its matrix representation.

Theorem 8.7. Let T ∈ L(V ) with minimal polynomial p(T ). A scalar λ is an eigenvalue
of T if and only if

p(λ) = 0

Hence p(t) and fT (t) have the same zeros.

Proof. Suppose λ is a zero of p(t). We know that

fT (t) = q(t)p(t)

Therefore λ is a zero of the characteristic polynomial, so it is an eigenvalue of T .
Conversely, suppose λ is an eigenvalue of T . Then we know that f(λ) = 0, so let x be

an eigenvector corresponding to λ:

p(T )(x) = p(λ)x = 0

Because we know x is not zero, p(λ) must be zero and hence it is a zero for the minimal
polynomial. �

Corollary 8.8. With the same assumptions, if fT splits, then

fT (t) = (λ1 − t)m1 · · · (λk − t)mk

with λi being the distinct eigenvalues of T , and mi being their multiplicities, then

p(t) = (t− λ1)n1 · · · (t− λk)nk

where 1 ≤ ni ≤ mi.
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Theorem 8.9. Let T ∈ L(V ), such that V is an n-dimensional T -cyclic subspace of itself.
Then the characteristic polynomial fT (t) and the minimal polynomial p(t) have the same
degree, and hence

fT (t) = (−1)np(t)

Proof. Recall that by the definition of T -cyclic subspace, there is an x such that

β = {x, T (x), . . . , Tn−1(x)}

is a basis for V . Let
g(t) = a0 + · · ·+ akt

k

be a polynomial of degree k < n. Then ak 6= 0 and

g(T )(x) = a0x+ a1T (x) + · · ·+ akT
k(x)

However, these vectors x, . . . , T k(x) are linearly independent, so g(T )(x) cannot be zero un-
less ai are all equal to zero. Therefore, g cannot be the minimal polynomial. Therefore, the
minimal polynomial cannot have degree less than n, so it is of degree n. So the characteristic
polynomial is the same as the minimal polynomial, up to a multiplicative constant. �

What these theorems build up to is

Theorem 8.2. if T ∈ L(V ), and V is finite-dimensional, then T is diagonalizable if
and only if the minimal polynomial of T is of the form

p(t) = (t− λ1) · · · (t− λk)

where λi are the distinct eigenvalues of T .

Proof. We will prove this with induction on the dimension. One direction is easy;
Suppose T is diagonalizable, with distinct eigenvalues λ1 . . . , λk. Set

f(t) = (t− λ1) · · · (t− λk)

We can check that f(T ) is zero, because there exists a basis of eigenvectors for V , denoted
vi’s. We see that

f(T )(vi) = (T − λ1) · · · (T − λi)(vi)

The order can be changed because they commute. One of them cancels vi, so the entire
expression f(T )(vi) = 0. Therefore, f(T ) maps the entire basis to zero; hence, f(T ) = 0.

So the minimal polynomial p divides f , and has the same roots as f , because all the
eigenvalues have to be zeroes of p. Therefore, p = f .

Conversely, assume f(T ) = 0; we need to show that T is diagonalizable.
By induction, let’s assume that T is diagonalizable. The case for dimV = n = 1 follows

immediately. Now assume it has been proven up to n − 1. We will try to work with the
eigenspace, and show that it has a complement space that is T -invariant. Let λk be the last
eigenvalue in the list of eigenvalues, and let’s set E(λk, T ), which is T -invariant. Let’s also
set W = =(T − λkI), which is also T -invariant. By the dimension theorem,

dimW = n− dimE(λk, T ) ≤ n− 1
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because the dimension of the eigenspace must be at least one. Furthermore, we need to
check that

E(λk, T ) ∩W = {0}

This is because λk is not an eigenvalue of T |W . If not, then there exists an x ∈ V such that
�
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