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1 Complex Numbers

1.1 Definitions

Definition 1.1.1 (Complex Number). A complex number is a point z = (x, y) of the plane, with
x, y ∈ R. We denote z by

z = x+ iy.

The set of complex numbers is denoted by C.

Definition 1.1.2 (Real and Imaginary Parts). Let z = x+ iy be a complex number. We define the
following:

(1) Re(z) = x is called the real part of z.

(2) Im(z) = y is called the imaginary part of z.

Now that we have defined complex numbers to be points on the plane, we now need to define
addition and multiplication over the complex numbers in order to make it a ring.

Definition 1.1.3. Let z1 = x1 + iy1 and let z2 = x2 + iy2 be complex numbers. Then the sum
z1 + z2 is defined by

z1 + z2 = (x1 + x2) + i(y1 + y2).

The product z1z2 is defined by

z1z2 = (x1x2 − y1y2) + i(y1x2 + x1y2).

Remark. The definition of the sum is consistent with the notation x+ iy; for instance, (2) + (3i) =
(2 + 0i) + (0 + 3i) = 2 + 3i. Notice how the definition of the + sign changes.

Moreover, the way we defined the product is important. If you work it out, we can see that

i2 = i× i = (0 + i)× (0 + i) = −1.

Thus, i2 = −1 and so i is a solution to the equation z2 + 1 = 0.

Definition 1.1.4. Let z ∈ C. Then we define the quantity −z to be

−z = (−x) + i(−y).

Definition 1.1.5. We define 0 ∈ C to be the quantity

0 := 0 + 0i.

Moreover, we define 1 ∈ C to be
1 := 1 + 0i.

Definition 1.1.6. Let z ∈ C, and z = x+ iy 6= 0. Then we define z−1 to be

z−1 :=

(
x

x2 + y2

)
+ i

(
−y

x2 + y2

)
.

To see where the equation for the inverse comes from, we can solve the linear system such that
for w = a+ ib, zw = 1. Multiplying them out, we get that

zw = 1 ⇐⇒ (xa− yb) + i(ya+ bx) = 1 + 0i (1)

⇐⇒

{
xa− yb = 1

ya+ bx = 0
(2)

⇐⇒

{
a = x

x2+y2

b = −y
x2+y2

. (3)
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We know that we want i2 = −1, and the usual rules of sums and products apply; in particular,
we want the field axioms to hold. Thus

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + iy1x2 + x1iy2 + iy1iy2

= (x1x2 − y1y2) + i(y1x2 + x1y2).

1.2 Basic Algebraic Properties

Recall the field axioms.

Proposition 1.2.1 (C is a field). Let z1, z2, z3 ∈ C. Then the following holds:

(1) (Associativity.) (z1 + z2) + z3 = z1 + (z2 + z3) and (z1z2)z3 = z1(z2z3)

(2) (Commutativity.) z1 + z2 = z2 + z1 and z1z2 = z2z1.

(3) (Distributivity.) z1(z2 + z3) = z1z2 + z1z3.

(4) (Identities.) We have that z + 0 = z and z · 1 = z for all z ∈ C.

(5) (Inverses.) For all z ∈ C and z 6= 0, then z + (−z) = (−z + z) = 0 and zz−1 = z−1z = 1 ∈ C.

Remark. Recall that all fields are integral domains. In other words, if z1z2 = 0, then at least one
of z1, z2 are 0.

Example. Suppose we want to compute (1+i)/(3+2i). A neat method is to multiply the numerator
and the denominator by (3− 2i)/(3− 2i) = 1. Then we get

1 + i

3 + 2i
=

1 + i

3 + 2i
· 3− 2i

3− 2i
=

3− 2i+ 3i− 2i2

32 − (2i)2
=

5 + i

9 + 4
=

5 + i

13
=

5

13
+ i

1

13
.

The crucial move here is that we were able to convert the denominator into a real number, thereby
isolating the computations to the top. Since the formula for the inverse of a complex number is
unwieldy, this is a very useful tool.

1.3 Vectors and Moduli

We have since defined our complex number as a point in the plane, characterized by two real numbers.
This means that our complex numbers are precisely isomorphic to R2, given by the isomorphism

z = x+ iy 7→ (x, y) ∈ R2.

Moreover, since we can consider complex numbers to be points on a plane, it makes sence to give
a notion of magnitude, or distance from the origin:

Definition 1.3.1 (Modulus, Magnitude). The modulus or magnitude of a complex number z = x+iy
is

|z| :=
√
x2 + y2 =

√
<(z)2 + =(z)2.
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1.4 Triangle Inequality

Theorem 1.4.1. Let z1, z2 ∈ C. Then

(1) |z1 + z2| ≤ |z1|+ |z2|.

(2) |z1 + z2| ≥ ||z1| − |z2||.

We have equality if and only if the angle between the vector representation of z1 and z2 are parallel.

[PROOF]

Proof. 1. proof

2. Foremost, we prove that |z1 + z2| ≥ |z1| − |z2|. Note that

|z2| = |z1 + z2 − z2|
≤ |z1 + z2|+ | − z2|
= |z1 + z2|+ |z2|.

Thus |z1 + z2| ≥ |z1| − |z2|. In the same way, we can also prove that |z1 + z2| ≥ |z2| − |z1|.
Therefore, |z1 + z2| ≥ ||z1| − |z2||.

We can represent this theorem geometrically: [IMAGE?]

Corollary 1.4.2. Let z1, . . . , zn ∈ C. Then

|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn|.

Proof. The proof is done by induction.

1.5 Complex Conjugation

Definition 1.5.1. Let z = x+ iy ∈ C. The (complex) conjugate of z, denoted z, is defined as

z := x− iy.

We can visually see how the two differ: [IMAGE?]
Immediately, the complex conjugate z is interesting:

Proposition 1.5.1. Let z ∈ C. Then

(i) z = z

(ii) |z| = |z|

(iii) zz = |z|2.

Proof.

(i) We have that z = x− (−iy) = x = iy = z.

(ii) |z| = |x+ (−y)i| =
√
x2 + (−y2) =

√
x2 + y2 = |z|.
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(iii)

zz = (x+ iy)(x− iy)

= x2 − (iy)2

= x2 + y2

= |z|2.

The last property of this proposition is the most interesting. It can be thought of as a counter
rotation.

How can we use these formulas to do quick calculations on complex numbers without relying on
the expansion of z as x+ iy?

Lemma 1.5.2. Let z ∈ C, and z 6= 0. Then

<
(

1

z

)
=
<(z)

|z|2

=
(

1

z

)
=
−=(z)

|z|2
.

Proof. In order to compute the real part, we note that

<
(

1

z

)
= <

(
z

zz

)
= <

(
z

|z|2

)
=

1

|z|2
< (z) =

<(z)

|z|2
.

The proof for the second equation is similar, except =(z) = −=(z).

Another useful proposition is how the conjugate behaves under the operations of addition and
subtraction:

Proposition 1.5.3. Let z1, z2 ∈ C. Then

(i) z1 + z2 = z1 + z2

(ii) z1z2 = z1 · z2

The following is important, since it allows us to interpret the function <(z) as a linear combination
of vectors in C. This is why if we have a complex solution to a homogeneous differential equation,
then we can simply take the real part and obtain a solution. which is physical

Proposition 1.5.4. Let z ∈ C. Then

<(z) =
z + z

2

=(z) =
z − z

2i

Proposition 1.5.5.

1. |z1z2| = |z1| · |z2|

2. If z2 6= 0, then |z1/z2|... [etc]
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1.6 Exponential Form

So far we have thought of complex numbers in terms of Cartesian coordinates (x, y). In physical
settings, it is sometimes more useful to think of them as polar coordinates, in terms of (r, θ).

For any (x, y) 6= (0, 0) in the plane, there is a unique θ ∈ (−π, π] that works.

Definition 1.6.1 (Argument of a Complex Number). Let z = x + iy ∈ C with z 6= 0. Then the
argument of z is a real number θ such that{

x = |z| cos θ

y = |z| sin θ
.

The set of arguments of z is denoted by arg(z).
The principal value of arg(z), denoted by Arg(z) is the unique θ ∈ arg(z) ∩ (−π, π].

Claim (Euler’s Formula). Let θ ∈ R. Then we claim

eiθ = cos θ + i sin θ.

[FINISH EXPONENTIAL STUFF]

1.7 Products & Powers

Proposition 1.7.1. Let r1, r2 ≥ 0 and θ1, θ2 ∈ R. Then

z1z2 = (r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2).

Proof. Proof by expanding into sins and cosines.

Corollary 1.7.2. Let r > 0 and θ ∈ R. Then

(reiθ)−1 =
1

r
e−iθ.

Proof. Multiplying;

Theorem 1.7.3 (DeMoivre). Let z be the complex number z = r(cos θ + i sin θ). Then zn is

zn = rn(cos(nθ) + i sin(nθ)).

Proof. We can write z as reiθ. Thus,

zn = (reiθ)n = rneinθ.

[UNDUCTION]

2 Holomorphic Functions

2.1 Functions and Mappings

Here, we are interested in functions whose inputs and outputs are not real variables but complex.

Definition 2.1.1 (Complex Function). Let S ⊆ C. A complex-valued function f : S → C on S is
a mapping from S to C such that each z ∈ S is assigned a unique complex number f(z), called the
value of f at z or the image of z by f .

The set S is called the domain of f . The image (or range) of f is defined by

Im f := {f(z) : z ∈ S}.

8
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Example. One example of a complex function is f(z) = z2, which maps complex inputs to complex
outputs. The function f(z) = 1/z is a function on C∗ = C \ {0}.

However, f(z) such that z 7→
√
z is not well-defined, as there is not a unique value for the square

root. However, z 7→ the principal square root is well-defined.

Remark. If we consider a complex number with the representation z = x+ iy, we can decompose
a complexly-valued function f into

f(z) = u(x, y) + iv(x, y)

where u and v are functions of two real varibles such that u, v : R→ R.

With these definitions in mind, it is worth identifying some commonly-seen transformations:

(1) Translation: f(z) = z + z0 for a fixed complex number z0.

(2) Scaling: f(z) = rz where r ∈ R. Note that if we allowed r to be complex, this would amount
to a rotation.

(3) Rotation: f(z) = eiθz is the rotation centered at 0 with angle θ.

2.1.1 The Mapping w = z2

Since we are in the complex plane, in order to map the input and output spaces, we would need to
somehow have access to 4-Dimensional space.

2.2 Limits

In order to help with our definitions of limits in the complex plane, the following topological definition
will be very useful.

Definition 2.2.1 (ε-neighborhood). An ε-neighborhood of z0 is an open disk of the form

Bε(z0) := {z ∈ C : |z − z0| < ε}.

for some ε > 0 ∈ R.

We tend to use this definition when we specify behaviors that occur locall around a point in the
complex plane (such as limits, etc.). Visually, this is a circle on the complex plane:

Definition 2.2.2 (Deleted ε-neighborhood). A deleted ε-neighborhood of z0 is the set Bε(z0) with
z0 removed:

Bε(z0) \ {z0} = {z ∈ C : 0 < |z − z0| < ε}.

The notion of deletion is useful in ignoring the behavior that may occur at some single point.

Definition 2.2.3 (Limit of a Complex Function). Let z0 ∈ C. Let f be a function defined on a
deleted ε-neighborhood of z0. Then we say that

lim
z→z0

f(z) = w0

if for any ε > 0, there exists a δ > 0 such that for any z such that 0 < |z − z0| < δ, we have that
|f(z)− w0| < ε.

Intuitively, what this means is that as z approaches z0, f(z) approaches w0. That is, there is a
deleted δ-neighborood such that the behavior of f(z) is contained within Bε(w0).

9
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Theorem 2.2.1. If the limit of f at a point z0 exists, then it is unique.

Proof. Suppose there were two limits, w and w′ such that w 6= w′. Then

lim
z→z0

f(z) = w

and
lim
z→z0

f(z) = w′.

Then let ε = |w − w′|/2. Then there is δ, δ′ > 0 such that

0 < |z − z0| < δ ⇒ |f(z)− w| < ε

and
0 < |z − z0| < δ′ ⇒ |f(z)− w′| < ε

However, consider δ∗ = min(δ, δ′). Then we have that

0 < |z − z0| < δ∗ ⇒ |f(z)− w| < ε and |f(z)− w′| < ε.

By the triangle inequality,

|w − w′| = |w − f(z) + f(z)− w′| ≤ |f(z)− w|+ |f(z)− w′| < 2ε = |w − w′|

which is impossible. Therefore w = w′.

Definition 2.2.4. For any ε-neighborhood od w0, there is a deleted δ-neighborhood of z0 such that
the image of Bδ(z0){z0} is included in Bεw0.

2.3 Limit Theorems

Theorem 2.3.1. Let z0 = x0 + iy0, and w0 = v0 + iv0 be in C. Then let

f(z) = u(x, y) + iv(x, y).

Then {
lim(x,y)→(x0,y0) u(x, y) = u0

lim(x,y)→(x0,y0) v(x, y) = v0.
⇐⇒ lim

z→z0
f(z) = w0.

Proof. Assume that {
lim(x,y)→(x0,y0) u(x, y) = u0

lim(x,y)→(x0,y0) v(x, y) = v0.

Let ε > 0. Then there is a δ1 such that if |(x, y)− (x0, y0)| < δ1 ⇒ |u(x, y) − u0| < ε/2 and a δ2
such that if |(x, y)− (x0, y0)| < δ2 ⇒ |v(x, y) − v0| < ε/2. Then let δ∗ = min(δ1, δ2). Consider
z : 0 < |z − z0| < δ∗. Then

|f(z)− w0| =
√

(u(x, y)− u0)2 + (v(x, y)− v0)2 <

√
ε2

4
+
ε2

4
=

ε√
2
< ε.

Conversely, assume that limz→z0 f(z) = w0. Exercise.

Remark. What do we mean by (x, y) → (x0, y0)? We simply mean the Euclidean 2-norm; This
also preserves the idea of the norm or modulus in the complex plane.
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Theorem 2.3.2. Let z0, w1, w2 ∈ C. Let f, g be functions such that limz→z0 f(z) = w1 and
limz→z0 f(z) = w2. Then

(i) limz→z0(f + g)(z) = w1 + w2

(ii) limz→z0(fg)(z) = w1w2

(iii) If w2 6= 0, then limz→z0

(
f
g

)
(z) = w1

w2
.

(iv) Let α, β ∈ C. Then limz→z0(αf(z) + β) = αw1 + β.

(v) limz→z0 f(z) = w1

(vi) limz→z0 |f(z)| = |w1|.

Proof. These results follow from the same results for two-variable real-valued functions.

Definition 2.3.1 (Polynomial). A polynomial is a function p(z) of the form

p(z) = a0 + a1z + a2z
2 + · · ·+ anz

n

for some n ≥ 0 and a1, . . . an ∈ C.

Corollary 2.3.3. If p(z) is a polynomial function and z0 ∈ C, then

lim
z→z0

p(z) = p(z0).

Proof. We can proceed by taking the limit of f(z) = z and use induction to construct the polynomial.

2.3.1 Limits at Infinity

In this section, we introduce a new point for the complex plane, denoted by ∞, called the point at
infinity. We then can consider the extended complex plane to be

C ∪ {∞}.

We can interpret this as the point we reach if we go very far from 0 in any direction. This is why
there is no concept of −∞. If we only consider one point as ∞, then we can consider the entirety of
the complex plane as a sphere, with ∞ at the pole.

Definition 2.3.2. A (deleted) neighborhood of ∞ is the set

{z ∈ C : |z| > 1/ε}

for some ε > 0. Informally put, you are very far away from 0. In this definition, ∞ is not included
in the set, so there is no distinction between regular and deleted neighborhoods.

Definition 2.3.3. Let z0, w0 ∈ C∪{∞}. Then let f be a function defined on a deleted neighborhood
of z0. We say that

lim
z→z0

f(z) = w0

if
∀Bε(w0) ∃Bδ(z0) \ {z0} : f(Bδ(z0) \ {z0}) ⊆ Bε(w0).

Remark. Let z0 ∈ C. Then limz→z0 f(z) =∞ means that

∀ε > 0,∃δ > 0 : ∀z ∈ C, 0 < |z − z0| < δ ⇒ |f(z)| > 1

ε
.
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The following theorem provides a way to change a limit that involves ∞ to a limit that does not
involve infinity.

Theorem 2.3.4. Let z0, w0 ∈ C. Then let f be a function. Then

(i) If limz→z0
1

f(z) = 0 ⇐⇒ limz→z0 f(z) =∞.

(ii) If limz→0 f(1/z) = w0 then limz→∞ f(z) = w0.

(iii) If limz→0
1

f(1/z) = 0 ⇐⇒ limz→∞ f(z) =∞.

Proof.

(i) Let ε > 0. There is a δ > 0 such that 0 < |z − z0| < δ ⇒
∣∣∣ 1
f(z) − 0

∣∣∣ < ε. This implies then

that |f(z)| < 1/ε.

(ii) exercise

(iii) exercise

Example. Suppose we wanted to find

lim
z→−1

iz + 3

z + 1
.

Clearly, the issue is in the denominator, and so we would expect this limit to be infinite. Then by
(i), we know that this limit is ∞ since the limit of the inverse is 0.

2.4 Continuity

Definition 2.4.1 (Continuous Function). Let f be a function and let z0 ∈ C. We say that f is
continuous at z0 if

lim
z→z0

f(z) = f(z0).

Remark. This definition contains three conditions. One, that f(z0) exists. Two, that limz→z0 f(z)
exists. And three, that these two quantities are equal.

Theorem 2.4.1 (Composition of Functions). Let f be continuous at z0, and let g be continuous at
f(z0). Then g ◦ f is continuous at z0.

Proof. The proof is the same as proving the result for real-valued functions.

Theorem 2.4.2. If a function f is continuous at a point z0, and f(z0) 6= 0, then f is nonzero on a
neighborhood of z0.

Theorem 2.4.3. Let f(z) = u(x, y) + iv(x, y). Let z0 = x0 + iy0 ∈ C. Then

u, v are continuous at (x0, y0) ⇐⇒ f is continuous at z0

Proof. This follows from theorem [THEOREM].

Definition 2.4.2 (Bounded). Let R ⊆ C be a region of the complex plane. Then we say that R is
bounded if there is an M > 0 such that

∀z ∈ R, |z| ≤M.

12
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Definition 2.4.3 (Limit point). Let R ⊆ C. A point z ∈ C is called a limit point of R if for any
ε > 0, then for the neighborhood Bε(z),

Bε(z) ∩R 6= ∅ and Bε(z) ∩Rc 6= ∅

Definition 2.4.4. A set R ⊆ C is closed if it contains all its limit points.

Theorem 2.4.4. Let R ⊆ C be bounded and closed. If f is continuous on R, then there exists a
constant M ≥ 0 such that

∀z ∈ R, |f(z)| ≤M
and there is equality for at least one such z.

2.5 Derivatives

Definition 2.5.1 (Derivative at a Point). Let z0 ∈ C, and let f be a function defined in a neigbor-
hood of z0. We say that f is differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0
exists. Then we write

f ′(z0) =
df

dz
(z0) := lim

z→z0

f(z)− f(z0)

z − z0
.

Remark. If we write h = z − z0, we can rewrite f ′(z0) as

f ′(z) = lim
h→0

f(z0 + h)− f(z0)

h

we can also write h as ∆z, and take this difference as an infinitesimal limit.

Example. Let f(z) = z2. Let z, h ∈ C. Then by the definition above,

lim
z→z0

f(z + h)− f(z)

h
=
z2 + 2zh+ h2 − z2

h
= 2z + h = 2z.

Example. Let f(z) = z. Let z0 = 0. Then

f ′(0) = lim
z→0

f(z)− f(0)

z − 0
= lim
z→0

z

z
.

However, this limit does not exist. If we approach 0 from the real axis, we get that this limit is 1,
and from the imaginary axis, we get -1. Therfore, f is not differentiable at 0.1

Even if f is a nice (i.e., C∞) function of u(x, y) and v(x, y), it may not be differentiable as a
complex function. In particular, we have that in general, the converse is is not true.

Warning. Let z = x0 + iy0, and let f(z) = u(x, y) + iv(x, y). Then

u and v differentiable at (x0, y0) 6⇒ f differentiable at z0.

Theorem 2.5.1. Let f be differentiable at z0 ∈ C. Then f is continuous at z0.

Proof. We have that

f(z) = f(z)− f(z0) + f(z0) =
f(z)− f(z0)z − z0

(
z − z0) + f(z0).

Therefore,
lim
z→z0

f(z) = f ′(z0)× 0 + f(z0) = f(z0).

thus f is continuous at z0.

As in the real case, the converse of this theorem is false. For instance, f(z) = z is continuous
everywhere but differentiable nowhere.

13
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2.5.1 Differentiability Rules

We have seen that there are functions that are nice in x and y, but are not necessarily differentiable.

Theorem 2.5.2. Let z ∈ C and f, g be functions which are differentiable at z. Let c ∈ C be a
constant. Then

(i) cf is differentiable at z, and (cf)′(z) = cf ′(z).

(ii) f + g is differentiable at z, and (f + g)′(z) = f ′(z) + g′(z).

(iii) fg is differentiable at z, and (fg)′(z) = f ′(z)g(z) + f(z)g′(z).

(iv) If g(z) 6= 0, then f/g is differentiable at z, and(
f

g

)
(z) =

f ′(z)g(z)− f(z)g′(z)

g(z)2
.

Proof.

1. blh

2. blag

3. By the definition,

f(z + h)g(z + h)− f(z)g(z)

h
=
f(z + h)g(z + h)− f(z)g(z + h) + f(z)g(z + h)− f(z)g(z)

h

=
f(z + h)− f(z)

h
g(z + h) +

g(z + h)− g(z)

h
f(z)

= f ′(z)g(z) + g′(z)f(z)

where the last equality results from limit algebra and the continuity of f and g.

Theorem 2.5.3. Let n ≥ 0 be an integer. Then

d

dz
(zn) = nzn−1

is true everywhere.

Proof. This proof proceeds by induction on n.

In order to evaluate these complex derivatives, it can help to treat z just like a real variable x;
many of the familiar theorems from calculus apply.

Lastly, we can develop an analogue of the chain rule for complex numbers. The statement is the
same as the real case.

Theorem 2.5.4. Let z0 ∈ C. Let f be a function that is differentiable at z0, and let g be differen-
tiable at f(z0). Then g ◦ f is differentiable at z0 and

(g ◦ f)′(z0) = g′(f(z0))f(z0).

14
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Proof. The idea is that we want to use the result that tells us that the composition of a continuous
function is continuous. Assume that f(z) 6= f(z0).From the definition of the derivative,

(g ◦ f)(z)− (g ◦ f)(z0)

z − z0
=
g(f(z))− g(f(z0))

f(z)− f(z0)
· f(z)− f(z0)

z − z0

= ϕ(f(z)) · f(z)− f(z0))

z − z0
.

where the function ϕ is

ϕ(w) =

{
g(w)−g(w0)
w−w0

w 6= w0 = f(z0)

g′(w0) w = w0.

Note that this is still true if f(z) = f(z0), since then the numerator will just be 0. Therefore, we
can take the limit and show that ϕ is continuous at w0.

lim
w→w0

ϕ(w) = ϕ(w0).

On the other hand, f is continuous at z0 since it is differentiable. In conclusion, we can use the
result saying that the composition of two functions is continuous to show that

lim
z→z0

= ϕ(f(z)) = ϕ(f(z0)) = φ(w0) = g′(w0).

and the limit of the other part in our product is

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0).

Thus, after doing some limit algebra, we have proven that

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).

2.6 Cauchy-Riemann Equations

Theorem 2.6.1. Let f be a function differentiable at some point z0 = x0 + iy0. We write f(z) =
u(x, y) + iv(x, y). Then u and v have partial derivatives at x0, y0 and{

∂u
∂x (x0, y0) = ∂v

∂y (x0, y0)
∂u
∂y (x0, y0) = − ∂v

∂x (x0, y0)

Moreover,

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

Proof. We know that f is differentiable. Therefore we know that

lim
h→0

f(z0 + h)− f(z0)

h
= f ′(z0)

Take to be real, with h = δ ∈ R. Then

=
1

δ
(u(x0 + δ, y0)) + iv(x0 + δ, y0)− u(x0, y0)− iv(x0, y0)

=
u(x0 + δ, y0)− u(x0, y0)

δ
+ i

v(x0 + δ, y0)− v(x0, y0)

δ

15
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Therefore, we can write

u(x0 + δ, y0)− u(x0, y0)

δ
= <

(
f(z0 + h)− f(z0)

h

)
so

lim
δ→0

u(x0 + δ, y0)− u(x0, y0)

δ
=
∂u

∂x
= <(f ′(z0)).

Where we can take the limit, since <(·) is a continuous function. On the other hand, we have that

lim
δ→0

v(x0 + δ, y0)− v(x0, y0)

δ
=
∂v

∂x
= =(f ′(z0)).

In particular,

f ′(z0) = f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

Now we do the same but with h = 0 + iδ.

If u and v have partial derivatives and the equation is true, then f is differentiable. However,
the converse is not true; differentiability in the complex sense is stronger than differentiability in
two real functions u, v. The interpretation of this is that partial derivatives of u, v existing only tells
us about the existence of limits when we approach from the real or the imaginary axis.

However, with some extra assumptions, we can prove a partial converse to the statement.

Theorem 2.6.2. Let z0 = x0 + iy0 ∈ C. Let f(z) = u(x, y) + iv(x, y) be a function defined on a
neighborhood Br(z0). Assume that

(i) ux, uy, vx, vy are defined everywhere on Br(z0).

(ii) ux, uy, vx, vy are continuous at (x0, y0).

(iii) The Cauchy-Riemann equations are satisfied (ux = vy and uy = −vx at (x0, y0)).

Then f is differentiable at z0 and

f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Proof. Assumptions (i) and (ii) imply that u and v are differentiable at (x0, y0) (note that this is
stronger than the existence of partial derivatives). This implies that

u(x, y)− u(x0, y0) = ux(x0, y0)∆x+ uy(x0, y0)∆y + ε1∆x+ ε2∆y

v(x, y)− v(x0, y0) = vx(x0, y0)∆x+ vy(x0, y0)∆y + ε3∆x+ ε4∆y

where εi → 0 when ∆x,∆y → (0, 0). By assumption (iii), we get that vy(x0, y0)∆y = ux(x0, y0).
We write h = ∆x+ i∆y

f(z0 + h)− f(z0) = u(x, y) + iv(x, y)− u(x0, y0) + iv(x0, y0)

= ux(x0, y0)∆x− vx(x0, y0)∆y + ε1∆x+ ε2∆y

− vx(x0, y0)∆x− ux(x0, y0)∆y − iε3∆x+ iε4∆y

= (ux(x0, y0)ivx(x0, y0))(∆x+ i∆y) + (ε1 + iε3)∆x+ (ε2 + iε4)∆y

Then dividing by h,

f(z0 + h)− f(z0)

h
= ux(x0, y0) + iv(x0, y0) + (ε1 + iε3)

∆x

h
+ (ε1 + iε4)

∆y

h

16
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Then ∣∣∣∣(ε1 + iε3)
∆x

h

∣∣∣∣ = |ε1 + iε3|
|∆x|

|∆x+ i∆y
≤ |ε1|+ |ε2| → 0.

so

lim
h→0

(ε1 + iε3)
∆x

h
= 0

and same for

lim
h→0

(ε2 + iε4)
∆y

h
= 0

Therefore,

lim
h→0

f(z0 + h)− f(z0)

h
= ux(x0, y0) + ivx(x0, y0).

Hence f ′(z0) exists and equals ux(x0, y0) + ivx(x0, y0).

2.7 Some Sufficent Conditions

How do you prove that a complex function is differentiable? There are several ways:

1. Use the definition.

2. Using differentiation rules (such as polynomials, quotients of polynomials, etc.) Works best if
we are working with explicit functions.

3. The previous theorem we proved, Theorem [NUMBER]. Useful for functions expressed in terms
of x and y.

Notation. For a complex number z, we write ez to mean

ez := ex+iy = exeiy = ex(cos(y) + i sin(y)).

Example. Let f(z) = ez = exeiy = ex (cos(y) + i sin(y)). The real and imaginary functions u, v are

u(x, y) = ex cos(y)

v(x, y) = ex sin(y)

u and v have partial derivatives

ux = ex cos(y)

uy = −ex sin(y)

and

vx = ex sin(y)

vy = ex cos(y)

These partial derivatives are continuous everywhere. Moreover, the Cauchy-Riemann equations hold
everywhere. By the theorem, f is differentiable everywhere, and we know that its derivative is

f ′(z) = ex cos(y) + iex sin(y)

which also happens to be f . Therefore,

d

dz
(ez) = ez.

17
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Example. Let f(z) = |z|2 = x2 + y2. So u(x, y) = x2 + y2 and v(x, y) = 0. The partial derivatives
for u are

ux = 2x

uy = 2y.

and vx = vy = 0. These are all continuous everywhere. However, this does not satisfy the Cauchy-
Riemann equations for any points except for the point (0, 0) and f ′(0) = 0. However, f is not
differentiable at any z 6= 0.

2.8 Polar Coordinates

Not covered

2.9 Holomorphic Functions

Before we discuss Holomorphic functions, we need to define some topological concepts.

Definition 2.9.1 (Open, Connected, Domain). Let S ⊆ C.

1. We say that S is an open set if for any z ∈ S, there exists an ε > 0 such that Br(z) ⊆ S.
Equivalently, S does not contain its limit points.

2. We say that S is disconnected if it is the union of two disjoint open sets. Otherwise, it is said
to be connected. Equivalently, a set S is connected if for any pair of elements z1, z2 in S can
be connected by a polygonal line in S consisting of finitely many segments.

3. A set which is nonempty, open, and connected is called a domain.

Definition 2.9.2 (Holomorphic). A function f is holomorphic at a point if it is differentiable on
a neighborhood of a point z0. A function f is holomorphic (or analytic) on an open set S if it is
differentiable for any point in S. An entire function is function which is analytic on C.

Example. Consider f(z) = 1/z. This is holomorphic on C∗. A polynomial is an entire function.
The function f(z) = |f |2 is differentiable at 0, but not holomorphic anywhere.

Theorem 2.9.1. Let f, g be functions.

1. If f and g are holomorphic on an open set S, then

f + g, f − g, fg

are analytic on S. If g 6= 0 on S, then f/g is also holomorphic on S.

2. If f is holomorphic on an open set S, and g is holomorphic on an open set T such that
f(S) ⊆ T , then

g ◦ f

is holomorphic on S.

Proof. Consequence of differentiation rules.

The following allows us to say that antiderivatives are unique up to an additive constant.

Theorem 2.9.2. Let D ⊆ C be a domain, and let f be holomorphic on D. If f ′(z) = 0 for any
z ∈ D, then f is constant on D.
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Proof. Let f(z) = u(x, y) + iv(x, y), and 0 = f ′(z) = ux(x, y) + ivx(x, y) = vy(x, y)− iuy(x, y). If a
complex number is 0 then its real and imaginary parts are also 0. Therefore ux = uy = vx = vy = 0
on D. Consider z1 = x1 + iy1 and z2 = x2 + iy2 ∈ D. Then we desire that f(z1) = f(z2). Assume
that the line segment between z1 and z2 is completely included in D. We can parameterize the line
segment as a function of t: {

x(t) = x1 + (x2 − x1)t

y(t) = y1 + (y2 − y1)t 0 ≤ t ≤ 1

Then

d

dt
(u(x(t), y(t))) =

dx

dt

∂u

∂x
(x(t), y(t)) +

dy

dt

∂u

∂y
(x(t), y(t))

where the partial derivatives are 0, since x(t), y(t) ∈ D. Therefore we have only a function of one
variable where u(x(t), y(t)) is constant with respect to t, so u(x(0), y(0)) = u(x(1), y(1)) and thus
u(x1, y1) = u(x2, y2). The same thing holds for v. Therefore, f(z1) = f(z2).

Since D is a domain, it is connected. Then there is a polygonal line made of finitely many
segments s1, · · · sn such that the line is contained entirely within D. Then let f(z1) = f(z2),

Definition 2.9.3. Let f be a function and z ∈ C. We say that z0 is a singular point of f if f is not
holomorphic at z0 but f is holomorphic at some point in any neigborhood of z0.

Example. The function z = 0 is not a singular point of f(z) = z2 since f is holomorphic everywhere.
However, z = 0 is a singular point of f(z) = 1/z since f is analytic everywhere except 0. Lastly,
z = 0 is not a singular point of f(z) = |z|2 since it is only differentiable at 0 but not holomorphic
anywhere.

We know that being differentiable in the complex sense is much stronger than differentiability
in either u or v. However, the property of being holomorphic is much much stronger. In fact, if a
function is holomorphic on D then it is infinitely differentiable on D. If f1 and f2 are holomorphic
on D, and f1 and f2 take the same values on a segment included in D, then f1 = f2. Hence, there
are few holomorphic functions. There are even stronger statements such as these, which just go to
show how powerful the condition of being holomorphic is.

3 Elementary Functions

3.1 The Exponential

We have seen this function before, but now we will give a proper definition.

Definition 3.1.1. Let z = x+ iy ∈ C. We define

ez := ex · eiy.

This is sometimes denoted as exp(z).

If z is real (y = 0), then we get the usual exponential function on R.

Theorem 3.1.1. The function ez is an entire function, and for any z ∈ C,

d

dz
(ez) = ez.

or exp′(z) = exp(z).
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Proof. We have already proved this last chapter, using the Cauchy-Riemann equations.

Definition 3.1.2. Let z1, z2 ∈ C. Then

ez1 · ez2 = ez1+z2

ez1

ez2
= ez1−z2 .

Proof. This can be proved by taking z1 = x1 + iy1 and z2 = x2 − iy2. Then

ez1ez2 = ex1ex2eiy1eiy2 = ez1+z2 .

The second equation is proved similarly.

These results are expected, whereas the next one is a point of departure from what we know
about the real exponential.

Theorem 3.1.2. Let z, z′ ∈ C, where z = x+ iy and z′ = x′ + iy′. Then

ez = ez
′
⇐⇒

{
x = x′

y = y′ + 2kπ k ∈ Z.

Here, the exponential is not injective.

Proof. It follows from the fact that

reiθ = r′eiθ
′
⇐⇒

{
r = r′

θ = θ′ + 2kπ k ∈ Z.

Then set r = ex, r′ = ex
′
, and θ = y, θ′ = y′.

Theorem 3.1.3. Let z = x+ iy ∈ C. Then

|ez| = ex

and
arg(ez) = {y + 2kπ : k ∈ Z}.

Proof. For the first, we have that

|ez| = |exeiy| = |ex| × |eiy| = |ex| = ex

since ex > 0. For the second part, we write ez in exponential form, so

ez = exeiy = reiy

with r = ex. Therefore, y is an argument. Then arg(ez) is created by adding integer multiples of 2π
to any other arguemnt.

Remark. Note that ez 6= 0 for any z ∈ C. It can be positive, negative, real, or complex, but not 0.
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3.2 The Logarithm

For real numbers, we define the logarithm to be the inverse of the exponential:

y = log(x), x > 0.

However, this definition is contingent on the uniqueness of x as a solution to the equation y = ex.
We demonstrated that in the complex case, there is not a unique solution to the equation ew = z.
If we write z = reiθ, and w = u+ iv, then

ew = z ⇐⇒ eu+iv = eln(r)+iθ

⇐⇒

{
u = ln(r)

v = θ + 2kπ, k ∈ Z.

.

Definition 3.2.1. A set-valued function is a map that assigns to each z in the domain a set of
values. It is useful to think of such a function F as

F : C→ P(C)

Remark. The function arg can be seen as a set-valued function.

Definition 3.2.2. The logarithm is the set-valued function log defined for z 6= 0 by

log(z) := ln |z|+ i arg(z)

That is, if z = reiθ for r > 0 and θ ∈ R,

log(z) = ln r + i(θ + 2kπ), k ∈ Z.

The principal value of the logarithm is

Log(z) = ln |z|+ iArg(z), z 6= 0

Proposition 3.2.1. For z 6= 0, then
elog(z) = z.

For z ∈ C, then log(ez) = z + i2πk, k ∈ Z.

Proof. Let z ∈ C∗. Then z = reiθ with r > 0, θ ∈ R. Then

log(z) = ln(r) + i (θ + 2πk) , k ∈ Z

Then for any k ∈ Z,
eln(r)+i(θ+2kπ) = elog reiθei2πk = reiθ = z.

Now let z = x+ iy ∈ C. Then

log(ez) = ln |ez|+ i arg(ez)

= ln(ex) + i(y + 2πk), k ∈ Z
= x+ iy + i2πk, k ∈ Z
= z + 2iπk, k ∈ Z.
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Proposition 3.2.2. The function Log defined on C∗ is the inverse function of exp restricted to the
set

{z ∈ C : −π < =(z) ≤ π} .
Moreover, Log on C \ (R−) is the inverse function of exp restricted to the set

{z ∈ C : −π < =(z) < π}

where R− = (−∞, 0].

Proof. Let z = x+ iy with −π < y ≤ π. Then Arg(ez) = y.

3.3 Branches and Logarithmic Derivatives

Our goal in this section is to differentiate the Logarithmic function. As you recall, it is a set-valued
function, and not one with single values. Therefore, we will first show that we can differentiate the
principal value of the logarithm.

We must first notice that Log is not continuous at z ∈ R−, since Arg is also not continuous on
this set.

Theorem 3.3.1. The function Log is analytic on C \ R−, and

d

dz
(Log(z)) =

1

z
.

Proof. We know that Log is continuous on C \R−, since Log(z) = ln |z|+ iArg(z). The modulus is
continuous on C∗, and Arg is continuous on C \R−. Now consider two points, z, z0 ∈ C \R−. Then,
letting w = Log(z) and w0 = Log(z0),

Log(z)− Log(z0)

z − z0
=

w − w0

ew − ew0

We know that the quantity

lim
w→w0

ew − ew0

w − w0
= ew0

so then

lim z → z0
ew − ew0

w − w0
= ew0

by the composition of limits. Since the right hand side is nonzero,

lim
z→z0

log(z)− Log(z0)

z − z0
=

1

ew0
(4)

=
1

z0
. (5)

as desired.

What we did above corresponds to the following idea about set-valued functions.

Definition 3.3.1. A branch of a set-valued function f is a single-valued function F such that F is
analytic on some domain D, and, for any z ∈ D, F (z) is a value of f(z).

It should be clear from the above definition that the function Log on C \ R− is a branch of the
log function. Moreover, for any α ∈ R, we can define a branch F of log on {z = reiθ : r > 0, α <
θ < α+ 2π} by F (reiθ) = ln |r|+ iθ for r > 0, α < θ < α+ 2π, where we exclude the endpoints in
order to make this branch analytic.
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3.4 Identities Involving Logarithms

Definition 3.4.1. If A,B ⊆ C, then

A+B = {a+ b : a ∈ A, andb ∈ b}.

Similarly, for λ ∈ C,
λA = {λ · a : a ∈ A}.

With this in mind, we have a meaninfgul way to linearly combine set-valued functions, since we
can always return another set under these definitions. Therefore,

Proposition 3.4.1. Let z1, z2 ∈ C∗. Then

log(z1z2) = log(z1) + log(z2)

and

log

(
z2
z2

)
= log(z1)− log(z2)

Proof. Recall that

log(z1z2) = ln |z1z2|+ i arg(z1z2)

= ln |z1| ln |z2|+ i(arg(z1) + arg(z2))

= log(z1) + log(z2).

We can do a similar proof for log(z1/z2), whereby the argument of a quotion is a subtraction.

Warning. Note that Log(z1z2) can be different from Log(z1)+Log(z2). Moreover, log(z2) 6= 2 log(z)
since 2 log(z) 6= log(z) + log(z).

3.5 Power Functions

Recall that for x > 0, a ∈ R, we have that xa = ea ln(x). Then we can extend this definition to the
complex plane.

Definition 3.5.1. Let c ∈ C. The power function with exponent c is defined for any complex
number z 6= 0 by

zc = ec log(z).

In general, this is a multiple valued function due to the log(z) in the exponent. Now, lets see
how this definition compares to our previous definitions. If z = reiθ, where r > 0 and θ ∈ R. then
we can write

zc = ec ln(r)eic(θ+2kπ), k ∈ Z.
Note that ei2kcπ is not necessarily an integer. If c = n ∈ Z, then

zn = en ln(r)einθei2kπn = rneinθ

which is a familar result, so this definition does not appear to contradict our previous notions. Thus,
restricted to the integers, zn is a single-valued function.

If c = 1/n, then recall that we attain n roots; thus

z1/n = eln(r)/nei(θ+2πk)/n, k ∈ Z

= (r)1/nei(
θ+2πk
n ), 0 ≤ k < n

so we get n different values which are the nth roots of z. Thus, we have finitely many values for
c ∈ Q.

Finally, if c ∈ C \Q, then there are infinitely many values for the expression.
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Warning. From now on, xc means the multiple valued powere even for x > 0. For instance,
r1/n 6= n

√
r. The former are the n nth roots of x ∈ C, whereas n

√
x is the single positive nth root of

x. More generally, if a ∈ R, then
xa 6= ea ln(x)

since the left has several values if a 6= Z, whereas the right has only one positive real number.

Definition 3.5.2. Let c ∈ Z. For z 6= 0, the principal value of zc is denoted by

PV(zc) = ecLog(z).

Corollary 3.5.1. For a positive integer n, then PV(z1/n) is the principal nth root of z.

Moreover, we can modify our previous definition of exponentiation,

zc = ec log(z) = ec(Log(z)+2iπk) = (PV(zc)) ei2πkc

Proposition 3.5.2. Let z ∈ C, and z ∈ C∗. Then

1

zc
= z−c,

1

PV(zc)
= PV(z−c).

Proof. We have that

1

zc
=

1

ec(Log(z)+i2πk)
= e−c(Log(z)+i2πk) = z−c

And it easily follows from definition that

1

PV(zc)
=

1

ecLog(z)
= e−cLog(z) = PV(z−c).

Proposition 3.5.3. Let c ∈ C, and z ∈ C∗, and n ∈ Z. Then

zczn = zc+n.

Moreover,
PV(zc) PV(zn) = PV(zc+n).

Proof. We know that zn has only one value. Thus

zczn = ec(Log(z)+i2πk)enLog(z)

= ec(Log(z)+i2πk)en(Log(z)+i2πk)

= e(c+n)(Log(z)+i2πk) = zc+n.

The proof of the second is true, and the proof is easy since these are single-valued functions.

Remark. In general, for c, d ∈ C, zczd 6= zc+d.
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3.5.1 Differentiating Power Functions

Theorem 3.5.4. Let c ∈ C. Then PV(zc) is a holomorphic function on C \ R−. Its derivative is

d

dz
PV(zc) = cPV(zc−1).

Proof. We jave that PV(z) = ecLog(z). We know that cLog(z) is holomorphic on C \ R−, and exp
is holomorphic on R. By the chain rule, PV(zc) is holomorphic in C \ R−, and

d

dz
PV(zc) =

d

dz
(cLog(z))ecLog(z)

=
c

z
PV(zc)

= cPV(z−1) PV(zc)

= cPV(zc−1).

3.6 Trigonometric Function

Recall that if x ∈ R, we get that

eix = cosx+ i sinx

e−ix = cosx− i sinx

If we combine the two equations, we see that

cosx =
eix + e−ix

2

sinx =
eix − e−ix

2i

We will use these functions to extend these functions to the comlex plane.

Definition 3.6.1. For z ∈ C, we define

cos z =
eiz + e−iz

2

sin z =
eiz − e−iz

2i
.

Definition 3.6.2. The functions sin and cos are entire functions, and for z ∈ C,

d

dz
cos(z) = − sin z

d

dz
sin(z) = cos z

Proof. This can be proved via the chain rule, since we know how to differentiate the exponential.

Many trigonometric formulas are stil valid, even after we have extended these functions into the
complex plane. In particualr,

cos2 z + sin2 z = 1.

One way of proving this is that the left hand function is analytic on the complex plane, and so is 1.
If two analytic functions are the same on a line segment, then they are the same everywhere, and
so we can conclude they are the same.

Recall that sinh(y) and cosh(y) have exponential formulas.
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Definition 3.6.3. For z ∈ C, the hyperbolic functions are

cosh z =
ez + e−z

2

sinh z =
ez − e−z

2

Then we have that {
sin(iz) = i sinh(z)

cos(iz) = cosh(z).

3.7 Zeroes and Singularities of Trigonometric Functions

Definition 3.7.1 (Zero of a function). A zero of a function f is a point z such that

f(z) = 0.

The quintessential example is that f(x) = x2 + 1 has no zeroes in R, but f(z) = z2 + 1 has two
on C.

Theorem 3.7.1. The zeroes of the function sin on C are {kπ : k ∈ Z}. The zeroes of cos on C are
{kπ + π

2 : k ∈ Z}. This means that they can only be zero on the real line.

Proof. Let z ∈ C, where z = x+ iy. Then

sin z = 0 ⇐⇒ eiz − e−iz

=
0

⇐⇒ eiz = e−iz

⇐⇒ e−y+ix = ey−ix

⇐⇒

{
−y = y

x = −x+ 2πk0, k0 ∈ Z.
⇐⇒

{
y = 0

x = k0π, k0 ∈ Z.

We can provide a similar proof for cos.

Definition 3.7.2. For z ∈ C \ {kπ + π
2 : k ∈ Z}, then

tan(z) =
sin(z)

cos(z)
.

For z ∈ C \ {kπ : k ∈ Z}, we define cot(z) as

cot(z) =
cos(z)

sin(z)
.
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4 Contour Integration

Our goal is to define and study integrals of functions of a complex variable along curves. There
are some very nice and powerful properties; indeed, the theory we develop here can greatly simplify
integration of real functions by seeing them as complex.

4.1 Derivatives of Functions w(t)

We consider complex valued functions of a real variable.

Definition 4.1.1. A complex valued function of a real variable w : I → C where I is a real interval.

We write w(t) = u(t) + iv(t), with u, v : I → R.

Definition 4.1.2. Let w : I → C be defined on a real interval I, written as w(t) = u(t) + iv(t), and
let t0 ∈ I. We say that w is continuous at t0 if u, v are continuous at t0.

Moreover, w is differentiable at t0 if u and v are differentiable at t0. Then the derivative is
w′(t0) = u′(t0) + iv′(t0).

Proposition 4.1.1. Let w1, w2 : I → C, and assume that they are both differentiable at some point
t0 in the interval. Then the following are true:

1. w1 + w2 is differentiable at t0 and (w1 + w2)′(t0) = w′1(t0) + w′2(t0).

2. w1w2 is differentiable at t0 and (w1w2)′(t0) = w′1(t0)w2(t0) + w(t0)w′2(t0).

3. If w2(t) 6= 0, then (
w1

w2

)′
(t0) =

w′1(t0)w2(t0)− w1(t0)w′2(t0)

w2(t0)2
.

The above should be verified without difficulty by applying known differentiation rules. However,
we have two possible chain rules in our differentiation; we can compose w with a function f : R→ R,
or we can compose w with another function C→ C.

Theorem 4.1.2 (Chain Rule 1). Let w : I → C and g : J → R > where I, J are real intervals. Let
t0 ∈ J , and assume g is differentiable at t0 and w is differentiable at g(t0). Then (w◦g)(t0) = w(g(t))
and the derivative is given by w′(g(t))g′(t).

Proof. If we write w(t) = u(t) + iv(t), then the proof follows immediately.

Theorem 4.1.3. Let w : I → C, where I is a real interval. Let f : C → C be a complex-valued
function of a complex variable. Let t ∈ I. Assume w is differentiable at t0, and f is (complexly)
differentiable at w(t0). Then f ◦ w is differentiable at t0, and

(f ◦ w)′(t0) = f ′(w′(t0))w′(t0).

Proof. Write w(t) = u(t) + iv(t), and write f(z) = U(x, y) + iV (x, y). Then

f(w(t0)) = U(u(t0), v(t0)) + iV (u(t0), v(t0))

Differentiating via the chain rule for two-variable functions we get

d

dt
f(w(t0)) = u′(t)

∂U

∂x
+ v′(t)

∂U

∂y
+ i

(
u′(t)

∂V

∂x
+ v′(t)

∂V

∂y

)
= u′(t0)

(
∂U

∂x
+
∂V

∂x

)
+ v′(t0)

(
∂U

∂y
+
∂V

∂y

)
= u′(t)f ′(t0) + v′(t)(if ′(t0))
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where we get the last step by the Cauchy-Riemann equations and substituting Uy = −Vx and
Ux = Vy. Therefore, we get

d

dt
f(w(t)) = f ′(w(t0))w′(t0)

The reason this works is due to the Cauchy-Riemann equations and the holomorphicity of func-
tions.

4.2 Definite Integrals of Functions w(t)

Definition 4.2.1. Let w : I → C, with w(t) = u(t) + iv(t), and assume that I has endpoints a and
b which are possibly ±∞. If the integrals ∫ b

a

u(t)dt∫ b

a

v(t)dt

Then we define ∫ b

a

w(t)dt :=

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt.

It follows from the definition that

<

(∫ b

a

w(t)dt

)
=

∫ b

a

<(w(t))dt

=

(∫ b

a

w(t)

)
=

∫ b

a

=(w(t))dt.

Proposition 4.2.1. Let a < b < c be real values. Let w be a complex-valued function of a real
variable. If ∫ b

a

w(t)dt∫ c

b

w(t)dt

exist, then ∫ c

a

w(t)dt

exists and equals ∫ b

a

w(t)dt+

∫ c

b

w(t)dt

Theorem 4.2.2 (Fundamental Theorem of Calculus). Let a < b be real numbers. Let w : [a, b]→ C
be a continuous function, and assume that there is a function W : [a, b] → C such that W is
differentiable on [a, b] and W ′(t) = w(t). Then∫ b

a

w(t)dt = [W (t)]
b
a = W (b)−W (a).
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4.3 Contours

Definition 4.3.1 (Path). A path γ is a continuous function [a, b]→ C for some a < b. We write C
as z(t), where t ∈ [a, b].

We call γ a simple arc if it does not intersect itself, or z(t1) 6= z(t2) if t1 6= t2.
We call γ a simple closed curve if it is simple, except z(a) = z(b).
A simple closed curve γ is positively-oriented if it is drawn in the counter clockwise direction.

Definition 4.3.2 (Reparameterization). Let γ be a path given by γ = γ(t), a ≤ t ≤ b. A repa-
rameterization of γ is a parameterization of the form Γ(τ) = γ (Φ(τ)), where α ≤ τ ≤ β for some
function Φ : [α, β]→ [a, b] which is C1, bijective, and Φ′(τ) > 0.

We now say that if an arc can be obtained from another one by a reparameterization, then
we consider these arcs to be the same (or belonging to the same equivalence class). Thus, an arc
is defined by a parameterization γ = γ(t), up to a parameterization. We have that γ(t) = Γ(τ).
This has the effect of allowing us to arbitrarily choose the interval on which the parameterization is
defiend.

Definition 4.3.3 (Differentiable Path). A path γ given by γ = γ(t), a ≤ t ≤ b is differentiable if
γ(t) is C1 on [a, b].

Definition 4.3.4 (Path Length). If a path γ is differentiable, we define the length of γ = γ(t),
a ≤ t ≤ b to be ∫ b

a

|γ′(t)| dt.

For such a definition, we can check that length does not depend on the parameterization; for
Γ(τ) = γ(Φ(τ)), we see that ∫ β

α

|Γ′(τ)| dτ =

∫ β

α

|γ′(Φ(τ))Φ′(τ)| dτ

=

∫ b

a

|γ′(t)| dt

after executing the change of variables t = Φ(τ).

Definition 4.3.5 (Smooth Path). A path given by γ(t) is smooth if it is differentiable and γ′(t) 6= 0.

With all this, we can define what a contour is.

Definition 4.3.6 (Contour). Let γ be a path given by γ = γ(t), a ≤ t ≤ b. We say that γ is a
contour if it is a simple closed path which is piecewise C1.

It can be tricky to keep track of the meanings of different

4.4 Integration and Operations on Contours

Definition 4.4.1 (Contour Integral). Let γ : [a, b] → U ⊆ C be a contour and let f : C → C be
piecewise continuous. Then we define the contour integral of f along γ as∫

γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt

We can check that this definition does not depend on reparameterization, by using a similar
argument as in last section. Next, we have the following properties:

29



Complex Variables Andreas Tsantilas

Proposition 4.4.1. Let f, g be piecewise C1 on a contour γ. Let c1, c2 ∈ C. Then∫
γ

(c1f + c2g)(z)dz = c1

∫
γ

f(z)dz + c2

∫
γ

g(z)dz.

Definition 4.4.2. Let γ be a path. Then we define

−γ := γ(−t).

Theorem 4.4.2. Let γ, γ1, γ2 be contours. If f is piecewise continuous on γ, then∫
−γ

f = −
∫
γ

f.

Moreover, if f is piecewise on γ1 and γ2, and γ1 + γ2 is defined, then∫
γ1+γ2

f =

∫
γ1

f +

∫
γ2

f.

Suppose we have a contour, which is a a simple, closed path which is piecewise C1. For instance,
we can define the contour

γ(t) =
{
eit 0 ≤ t ≤ π

Note that γ′(t) is always tangent to the curve at γ(t).

4.4.1 Example with Branch Cuts

Example. Let f(z) = PV(z1/2) for z 6= 0. Such a function is holomorphic on C \R−. Suppose our
contour is given by γ(θ) = eiθ, and 0 ≤ θ ≤ 2π. Then we can try and find the integral along the
contour:

f(γ(θ)) = exp

(
1

2
Log(γ(θ))

)
= exp

(
1

2
(ln |γ(θ)|+ iArg(γ(θ)))

)
= exp

(
i

2
Arg(γ(θ))

)
.

However, we must note that Arg(γ(θ)) is θ if θ ∈ [0, π], and θ − 2π if θ ∈ (π, 2π]. Then

f(γ(θ)) =

{
eiθ/2 0 ≤ θ ≤ π
−eiθ/2 π < θ ≤ 2π.

This is piecewise continuous, so∫
γ

f(z)dz =

∫ π

0

eiθ/2ieiθdθ +

∫ 2π

π

−eiθ/2ieiθ/2dθ

=

[
2

3
e3iθ/2

]π
0

−
[

2

3
e3iθ/2

]2π
π

= −4

3
i
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4.5 Bounding Integrals

In this section, we will develop some elementary ideas on how to properly bound integrals.

Lemma 4.5.1. Let w : [a, b]→ C. Then∣∣∣∣∣
∫ b

a

w(t)dt

∣∣∣∣∣ ≤
∫ b

a

|w(t)|dt.

Proof. We can write the intgral in exponential form, r0e
iθ0 . Then∣∣∣∣∣

∫ b

a

w(t)dt

∣∣∣∣∣ = r0

= e−iθ0
∫ b

a

w(t)dt

=

∫ b

a

e−iθ0w(t)dt

However, since r0 is a real number,

r0 = <(r0) = <

(∫ b

a

e−iθ0w(t)dt

)

=

∫ b

a

<
(
e−iθ0w(t)dt

)
≤
∫ b

a

|w(t)|dt

Theorem 4.5.2. Let γ denote a contour of length L, and let f be a piecewise continuous function
on γ. Assume that there is a constant M ≥ 0 such that |f(z)| ≤M for any z on γ. Then∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ML

Proof. We assume that γ is givven by γ = γ(t) for t ∈ [a, b]. Then∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t)dt

∣∣∣∣∣
≤
∫ b

a

|f(γ(t))γ′(t)dt|

≤M
∫ b

a

|γ′(t)|dt

= ML.
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4.6 Antiderivatives

Definition 4.6.1 (Antiderivatives). Let f be a continuous function on a domain D. THen we say
that F is an antiderivative of f on D if F is holomorphic on D and F ′(z) = f(z) for any z ∈ D.

We saw examples where the integral between two points does not depend on the contour we
chose between them. Then we can prove the following result.

Theorem 4.6.1. Suppose that f is continuous on a domain D. Then the following are equivalent.

(i) f has an antiderivative F .

(ii) The integral of f along a contour γ ⊂ D depends only on the initial and final point of γ.

(iii) The integral of f along a closed contour γ ⊂ D is 0.

That is, if these statements are true, then for any z1, z2 ∈ D, for any contour γ from z1 to z2 included
in D, then ∫

γ

f(z)dz = [F (z)]
z2
z1

= F (z1)− F (z2).

Remark. An antiderivative, if it exists, is unique up to an additive constant. In other words, if
F is an antiderivative of f on D, then the antiderivatives of f on D, then the antiderivatives are
F (z) + c for any constant c ∈ C.

Proof. Clearly, F (z) + c is an antiderivative of f . Then if G is an antiderivative of f on D, then

(F −G)′(z) = F ′(z)−G′(z) = f(z)− f(z) = 0.

So F − G is holomorphic on the domain D with derivative 0, so F − G must be constant. It is
important that D is connected.

How do we use the above theorem? We mostly use it to compute
∫
γ
f when one already knows

an antiderivative of f on a domain including γ.

Example. Let us find the integral ∫
γ

cos(z)dz

On a contour from −1 to 1. The shape of the contour does not matter, so we have that

F (z) = sin z

which is holomorphic on the entire complex plane, or where D = C. Hence,

sin(1)− sin(−1) = 2 sin(1).

Example. Let us try to compute ∫
γ

1

z2
dz

where γ is any contour from i to 1 but not containing 0. Then D = C∗, and the antiderivative of
1/z2 is −1/z. Then we get [

−1

z

]1
i

= −1− i.
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Example. One example where the above may fail is for f(z) = 1/z. This is continuous on D = C∗.
Then we can consider γ1 to be the positively oriented semicircle of radius 1 on the upper half of the
real line, and let γ2 be the negatively-oriented semicircle on the lower half of the plane. Then we
have ∫

γ1

1

z
dz = iπ 6= −iπ =

∫
γ2

1

z
dz.

The reason the theorem fails here since 1/z has no antiderivative defined on C∗. What is true is
that 1/z has an antiderivative on C \ R−, which is Log(z).

Recall that the definition of the antiderivative necessarily means that the antiderivative is holo-
morphic on the given domain D.

Now that we have played around with the result, we will provide a rigorous proof.

Proof.

(1) (i)⇒(ii). Suppose there is an antiderivative of f on D. Let γ be a contour from z1 to z2
included in D. In particular, we assume γ is a smooth path. Then∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

= F (z(b))− F (z(a))

= F (z2)− F (z1).

where we can invoke the Fundamental theorem of Calculus since f and γ′ are continuous. For
the general case, we can apply the particular case to each smooth piece. Therefore, we will get
the desired result by summing the resultant integrals.

(2) (ii)⇒(i). Assume that the integral depends only on the endpoints. Then fix an arbitrary
z0 ∈ D. Define

F (z1) =

∫ z1

z0

f(z)dz

for any z1 ∈ D. This means the intgral along any contour from z0 to z1 included in D, which
is from assuming 2. Now we want to prove that

lim
η→0

F (z1 + η)− F (z1)

η
.

Let ε > 0, let η ∈ C : 0 < |η| < δ. Because D is open by definition, there is a neighborhood of
z1 of radius δ1 included in D. Then for |η| < δ1, z1 + η is in D and

F (z1 + η)− F (z1) =

∫ z1+η

z0

f(z)dz −
∫ z1

z0

f(z)dz

=

∫ z1+η

z1

f(z)dz

=

∫
γ

f(z)dz

with γ : γ(t) = z0 + tη, where t ∈ [0, 1]. Then we can write the above as

F (z1 + η)− F (z1) =

∫ 1

0

f(z1 + tη)η dt.
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Now let us compute the ratio

F (z1 + η)− F (z1)

η
− f(z1) =

∫ 1

0

f(z1 + tη)dt− f(z1)

=

∫ 1

0

(f(z1 + tη)− f(z1)) dt.

Then since f is continuous, then ∃δ2 such that 0 < |z − z1| < δ2 ⇒ |f(z) − f(z1)| < ε. Then
we select δ = min(δ1, δ2). Then we choose η such that 0 < |η| < δ. Then the above implies
that ∣∣∣∣F (z1 + η)− F (z1)

η
− f(z1)

∣∣∣∣ =

∣∣∣∣∫ 1

0

(f(z1 + η)− f(z1))dt

∣∣∣∣
≤
∫ 1

0

|f(z1 + tη)− f(z1)| dt

< ε.

This proves the desired result.

(3) (ii)⇒(iii). Assume (ii) is true. Let γ be a closed contour included in D with endpoint z0. We
weant to prove that

∫
γ
f(z)dz = 0. Let γ0 : γ(t) = z0. Then∫

γ0

f(z)dz =

∫
f(z0)γ′(t)dt = 0.

(4) (iii)⇒(ii). Let γ1, γ2 be contours from z1 to z2 included in the domain D. Then we want to
prove the two integrals are equal. Define γ = γ1 − γ2. By (iii), we know the integral is 0. But
we know that ∫

γ

f =

∫
γ1

f +

∫
−γ2

f

=

∫
γ1

f −
∫
γ2

f

= 0

So ∫
γ1

f(z)dz =

∫
γ2

f(z)dz

as desired.

4.7 The Cauchy-Goursat Theorem

3/25

Theorem 4.7.1 (Jordan Curve Theorem). sec. 43: If γ is a simple, closed curve, then there are
two domains I and E such that I is in the inside of the contour and E is outside of it. Morever, I
is bounded and bounded and called the interior of γ; E is unbounded and called the exterior. The
points on γ are the boundary points of I and E.

I ∪ γ ∪ E = C.
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Theorem 4.7.2 (Cauchy-Goursat). Let γ be a simple, closed contour. Let f a function holomorphic
on a domain D. If γ and its interior are in D, then∫

γ

f(z)dz = 0.

Example. Consider f(z) = 1/z, which is holomorphic on C∗. Let γ be a simple closed contour
such that the countour and its interior are contianed in C∗. Then the integral∫

γ

1

z
dz = 0.

The first proof was in the case where f ′ is continuous on D. In this case, it relies on Green’s
theorem, which tells us how to relate an integral on a domain to its boundary.

Theorem 4.7.3 (Green’s). If Q,P are functions of two real variables, with real outputs, with
continuous partial derivatives on the domain D, then∫

∂R

Pdx+Qdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA. (6)

Proof. Assume that γ = γ(t), for a ≤ t ≤ b. For any t, write γ(t) = x(t) + iy(t); the function
f(z) = u(x, y) + iv(x, y). Then we can compute the integral:∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

=

∫ b

a

(u(x(t), y(t)) + iv(x(t), y(t))) · (x′(t) + iy′(t))dt

=

∫ b

a

[u(x(t), y(t))x′(t)− v(x(t), y(t))y′(t)] dt+ i

∫ b

a

[u(x(t), y(t))y′(t)− v(x(t), y(t))x′(t)]

=

∫
γ

udx− vdy + i

∫
γ

udy + vdx

=

∫∫
R

(−vx − uy)dA+ i

∫∫
R

(ux − vy)dA

Now since our function is holomorphic, we can use the Cauchy-Riemann equations. This means that
both the integrals are 0, as desired.

4.8 Simply Connected Domains

Definition 4.8.1 (Simply Connected Domain). A simply connected domain D is a domain such that
every simple closed curve within it only encloses points of D. Intuitively speaking, it is a domain
without holes.

Example. Some examples of simply connected domains are C, C\R−. However, C∗ is not a simply
connected domain, since any contour which goes around 0 will have points in the interior not in the
domain.

The annoying party about the Cauchy-Goursat theorem is that it requires that the interior of
the contour is in the domain. However, if a domain is simply connected, then we are by definition
guaranteed to have the interior in the domain.
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Theorem 4.8.1. Let f be holomorphic on a simply connected domain D. For any closed contour
γ ⊂ D, ∫

γ

f(z) = 0.

Proof. If γ is a simple closed curve, then we know by definition that the interior of γ is included in
D. Therefore, the theorem follows from the first version of the Cauchy-Goursat theorem.

If γ intersects itself at one other point which is not the endpoint, then we can decompose γ into
two curves, γ1 and γ2 such that they are simple and closed contours. Therefore, the integral can be
written as sum over both contours, both of which are 0. This can be extended to any finite number
of curves by induction.

In general, infinitely many intersections can be proven, but the proof will not be provided here.

This version of the theorem requires that D be simply connected, but it doesn’t require that γ
be simple. This way, we make no assumptions on the interior of γ.

Example. Let D = {z : |z| < 3}. Let γ ⊂ D be a closed contour. Then∫
γ

sin z

(z2 + 9)5
= 0.

The integrand is defined when |z| < 3, and it is holomorphic by the rules of holomorphic functions.
In particular, f is holomorphic on D which is simply connected, so the integral is 0.

What follow are some corollaries of the above theorem:

Corollary 4.8.2. A function f that is holomorphic on a simply connected domain D must have an
antiderivative on D.

Proof. We know that f is continuous on D. Moreover, by the second version of the Cauchy-Goursat
theorem, we know that the integral will be 0 for any closed curve γ lying in D. Therfore, statement
3 in the theorem of section 48 is true. Therefore, there is an antiderivative.

Corollary 4.8.3. Entire functions always posess antiderivatives.

Proof. This follows from the fact that C is a simply connected domain.

4.9 Multiply Connected Domains

In a nutshell, a multiply connected domain means not simply connected. Moreover, a holomorphic
function f on a multiply connected domain can have an antiderivative or not. For instance, 1/z3

and 1/z on C∗.
Even though we cannot say that contour integrals are 0, we can still have some independence

with respect to the contour for integrals.

Theorem 4.9.1 (Principle of Deformation of Paths). Let γ1, γ2 be positively-oriented simple closed
contours, where γ1 is included in the interior of γ2. If f is a function holomorphic at any point which
is on γ1, γ2, or between γ1 and γ2, then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

Proof. We would like to apply the Cauchy-Goursat theorem. We must choose our contours wisely
before applying it.
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Theorem 4.9.2. Let γ, γ1, . . . , γn be simple closed contours positively oriented, such that the
interiors of γ1, . . . , γn are disjoint and all included in the interior of γ.

If f is analytic on all these contours and on the multiply connected domain consisting of the
points inside γ and exterior to each γk, then∫

γ

f(z)dz =

∫
γ1

f(z)dz + · · ·+
∫
γn

f(z)dz.

Visually, this looks like:
[PICTURE]

4.10 Cauchy Integral Formula

Theorem 4.10.1 (Cauchy Integral Formula). Let f be holomorphic everywhere inside and on a
simple closed contour γ, which is positively oriented. If z0 is any point on the interior of γ, then

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz.

Proof. We have that z0 is in the interior of γ which is open. Since it’s open, there is an r > 0
such that the open ball Brz0 is included in the interior of γ. Then let γr be the contour which is
positively-oriented and comprises the boundary of the open ball. By the previous theorem, we know
that ∫

γ

=
f(z)

z − z0
dz =

∫
γr

f(z)

z − z0
dz.

Now we want to prove that ∫
γr

f(z)

z − z0
dz =

∫
γr

f(z0)

z − z0
dz.

Since this integral does not depend on r, we will show this is the case. Let ε > 0. By continuity of
f at z0, there is a δ > 0 such that 0 ≤ |z − z0| < δ ⇒ |f(z) − f(z0)| < ε. Then choosing an r < δ,
we see that for any z on the contour that∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ < ε

r
.

Therefore, ∣∣∣∣∫
γr

f(z)

z − z0
fz −

∫
γr

f(z0)

z − z0
dz

∣∣∣∣ ≤ ∫
γr

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣
≤ ε

r
2πr

= 2πε.

However, we know that ∫
γ

f(z)

z − z0
dz

∫
γr

f(z0)

z − z0
dz = f(z0)× 2iπ

from which we obtain our result; ∣∣∣∣∫
γ

f(z)

z − z0
dz − 2iπf(z0)

∣∣∣∣ ≤ 2πε

for all ε > 0.
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The above is an important theoretical statement, as well as important for calculations. This
means that f is completely determined on the interior of γ by its values on γ.

Theorem 4.10.2 (General Cauchy Integral Formula). Let f be holomorphic within and on a posi-
tively oriented simple closed contour γ. If z0 is any point interior to γ, then f is infinitely differen-
tiable at z0 and

f (n)(z0) =
n!

2iπ

∮
γ

f(z)

(z − z0)n+1
dz

for any integer n ≥ 0.

4/8
Now we may consider some consequences of this formula.

Theorem 4.10.3. If a function f is holomorphic at a point z0, then it is infinitely differentiable in
a neighborhood of z0.

Proof. From the definition of holomorphicity, if f is holomorphic at z0 means that f is holomorphic in
a neighborhood {z : |z−z0| < ε} of z0. We do not know that f is holomorphic on the boundary of this
circle, but we may choose a circle N of radius ε/2, and let γ = ∂N . Now all the assumptions of the
general Cauchy Integral formula are satisfied (that f is holomorphic on and within γ.) Therefore, by
the integral formula, f has infinitely many derivatives on the interior of C, which is a neighborhood
of z0.

Note that a function may be differentiable at a point, but not holomorphic. It is much stronger,
and gives us the remarkable theorem above. The above has the following corollary:

Corollary 4.10.4. If a function f(z) = u(x, y)+ iv(x, y) is analytic at z0, then u and v have partial
derivatives at all orders in a neighborhood of z0.

Proof. This can be proved by induction by using the Cauchy-Riemann equations.

Theorem 4.10.5 (Cauchy’s Inequality). Let z0 ∈ C and r > 0, r ∈ R. Let f be holomorphic
function on and within a contour γr, which is the positively-oriented circle with radius r. around
z0. Then |f(z)| has a maximal value Mr on γr.

Moreover, for any integer n ≥ 0, ∣∣∣|f (n)(z0)
∣∣∣ ≤ n!Mr

rn
.

Proof. We must first prove that there is the maximal value Mr. Its existence is guaranteed, however,
by the theorem [THEOREM] since f is continuous on γr and since we are on a bounded, closed
region.

Then, since f is holomorphic on and within γr, by the Cauchy Integral formula, we know that

f (n)(z0) =
n!

2iπ

∮
γr

f(z)

(z − z0)n+1
dz.

Then we can take the modulus, and note that for z on the contour γr,∣∣∣f (n)(z0)
∣∣∣ =

n!

2π

∣∣∣∣∮
γr

f(z)

(z − z0)n+1
dz

∣∣∣∣
≤ n!

2π

∮
Mr

rn+1

=
n!

2π
· 2πr Mr

rn+1

=
n!Mr

rn
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as desired.

Example. Assume f is holomorphic on and within the unit circle, and |f(z)| ≤ 1 on the unit circle.
Then |f(0)| ≤ 1. Then |f ′(0)| ≤ 1. Similarly, |f (n)(0)| ≤ n!. Note that this only works for the center
of the contour, since that is the only point for which the distance to the boundary is 1.

4.11 Liouville’s Theorem and the Fundamental Theorem of Algebra

Theorem 4.11.1 (Liouville’s Theorem). If a function f is entire and bounded on C, then f is a
constant function.

Proof. Let z0 ∈ C and let r > 0, r ∈ R. Then f is holomorphic on and within γr, which is the circle
centered at z0 of radius r. Then, we can apply Cauchy’s inequality. Let Mr be the maximal value
of |f(z)| on γr. Then

|f ′(z0)| ≤ Mr

r

However, we also know that f is bounded on C. Then tehre is a constant M > 0 such that for any
z ∈ C, |f(z)| ≤M . In particular, Mr ≤M . Then

|f ′(z0)| ≤ M

r
.

Now, the above holds for any r. Therefore, the modulus of the derivative is arbitrarily small, so we
must have that f ′(z0) = 0. This implies that f is constant on C, from theorem [Theorem]

This theorem may seem counter-intuitive. For instance, our first insticnt may be to consider sin
and cos. However, these are bounded on the real axis and unbounded on the imaginary axis; that
is,

sin(iy) =
e−y − ey

2i
.

The next question is how do we get the fundamental theorem of algebra from this? First, recall
the definitions of a (complex) polynomial and a zero of a polynomial.

Lemma 4.11.2. Let p(z) be a polynomial of degree n. Then there is a constant r > 0 such that
for any |z| > r,

|p(z)| ≥ |an|r
n

2
.

What this says is basically that the largest term dominates.

Proof. We have that

p(z) = anz
n + zn

(a0
zn

+ · · ·+ an−1
z

)
.

We can apply the second version of the triangle inequality,

|p(z)| ≥ |anzn| − |zn|
∣∣∣a0
zn

+ · · ·+ an−1
z

∣∣∣
≥ |an||zn|

|a0|
|zn|

+ · · ·+ |an+1

|z|

≥ |a0|
rn

+ · · ·+ |an−1
r

≥ |a0|+ · · ·+ |an−1|
r
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With the choice

r ≥ 2(|a0|+ · · ·+ |an−1|)
|an|

,

then

|p(z)| ≥ |z|n
(
|an| −

|an|
2

)
= |z|n |an|

2

≥ rn |an|
2

as desired

Theorem 4.11.3 (Fundamental Lemma of Algebra). Every polynomial of degree at least one has
at least one zero.

Proof. Let p be a polynomial. Assume that p has no zero. Then this will prove that p is constant,
which is a proof by contrapositive. Then the function 1/p(z) is entire, since p(z) 6= 0 for any z ∈ C.
Moreover, 1/p(z) is bounded on C. By the above lemma, there is an r > 0 such that |z| > r implies
that |p(z)| ≥ |an|rn/2. This implies that ∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ 2

|an|rn
.

Inside the closed disk of radius r, we know that our function is also bounded by Cauchy’s inequality.
Therefore, since 1/p(z) is entire and bounded, we know that 1/p(z) is constant by Liouville’s

theorem. Therefore, p(z) is constant on C, so it does not have a positive degree.

Theorem 4.11.4. Let p(z) be a polynomial of degree n ≥ 1. Then there exist complex constants
c, α1, . . . , αn ∈ C such that

p(z) = c(z − α1)(z − α2) · · · (z − αn).

Remark. Note that the αi’s may appear several times. Therefore, p cannot have more than n
distinct zeroes.
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5 Sequences and Series

4/13/21

Definition 5.0.1 (Divergent Series). If a sequence has no limit, we say it divergence.

Theorem 5.0.1. Let (zn) be a sequence of complex numbers. Write zn = xn + yn for each n. Let
z = x+ iy ∈ C. Then

lim
n→∞

= z ⇐⇒

{
limn→∞ xn = x

limn→∞ yn = y

So we can write that limn→∞(xn + iyn) = limn→∞ xn + i limn→∞ yn as soon as we know the limit
on the left-hand side exists or both limits on the Right Hand Side exist.

Example. Let the sequence

zn =

(
2 +

2

n

)
+ i

(
1 +

2

n

)
then

lim
n→∞

zn =

(
lim
n→∞

2 +
2

n

)
+ i

(
lim
n→∞

1 +
2

n

)
= 2 + i.

Let ε > 0. Let

4/15

5.1 Taylor Series

You should know that for real functions, we can expand some of them into an infinite Taylor Series,
with its derivatives and factorials.

Theorem 5.1.1. Let z0 ∈ C, and r0 > 0. Assume a function f is holomorphic on the open disk
centered at z0 with radius r0. Then for any |z − z0| < r0, then

f(z) =

∞∑
n=1

f (n)(z0)

n!
(z − z0)n. (7)

This equation is called the Taylor Series of f at z0.

How do we apply this theorem? If f is holomorphic on a domain D, let z0 ∈ D. Then choose
the largest r0 such that {z : |z − z0| < r0} is included in D. Then by Taylor’s theorem, we know
that every point in this maximal disk admits an infinite expansion.

Remark. When z0 = 0, and f is holomorphic on {z : |z| < r0}, then

f(z) =

∞∑
n=0

f (n)(0)

n!
zn (8)

The proof of Taylor’s theorem, though a sweeping statement, can be made concise due to the
tools we have already developed. In particular, we know that holomorphicity implies infinite differ-
entiability, and we also have the Cauchy integral formula for disks.

Proof. Let z ∈ C such that |z − z0| < r0. Let ρ = |z − z0|, and let ρ0 > 0 be such that ρ < ρ0 < r0.
Essentially, we create a circle slightly smaller than the larger circle with radius r0. In particular, we
know that f is holomorphic on Bρ0(z). For N ≥ 0, let

SK(z) :=

K∑
n=0

f (n)(z0)

n!
(z − z0)n.
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We want to show that SK(z)→ f(z). Since f is holomorphic on and within Bρ0(z), then the Cauchy
integral formula gives us

f (n)(z0) =
n!

2iπ

∫
Bρ0

f(w)

(w − z0)n+1
dw

so then

SK(z) =

K∑
n=0

1

2iπ

∫
Bρ0

f(w)

(w − z0)n+1
dw

=
1

2iπ

∫
Bρ0

K∑
n=0

f(w)

(w − z0)n+1
dw

=
1

2iπ

∫
Bρ0

(
f(w)

w − z0

K∑
n=0

(
z − z0
w − z0

)n)
dw

after applying theorems from the geometric sum, this turns into

1

2iπ

∫
Bρ0

f(w) ·
1−

(
z−z0
w−z0

)K+1

w − z

 dw

Therefore,

SK(z) =
1

2iπ

∫
Bρ0

f(w)

w − z

(
1− z − z0

w − z0

)
dw

= f(z)− 1

2iπ

∫
Bρ0

f(w)

w − z

(
z − z0
w − z0

)K+1

dw

Now we want to show that |SK(z)− f(z)| → 0. Therefore,

|SK(z)− f(z)| = 1

2π

∣∣∣∣∣
∫
Bρ0

f(w)

w − z

(
z − z0
w − z0

)K+1

dw

∣∣∣∣∣
We know that f is holomorphic, and therefore continuous on Bρ0 which is a closed and bounded
region. Therefore, there is an M > 0 such that |f(w)| ≤M for any w on C0. Therefore,

|w − z| ≥ |w − z0| − |z − z0| = ρ0 − ρ∣∣∣∣ z − z0w − z0

∣∣∣∣K+1

=

(
ρ

ρ0

)K+1

And therefore, we can say that

|SK(z)− f(z)| ≤ 1

2π
× 2πρ0 ×

M

ρ0 − ρ

(
ρ

ρ0

)K+1

which goes to 0 as K →∞. This proves that the series converges and equals

Now we can consider some examples of this remarkable theorem.

Example. The following functions have these useful expansions:
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(1)

1

1− z
=

∞∑
n=0

zn, |z| < 1

(2)

ez =

∞∑
n=0

zn

n!
, z ∈ C

(3)

sin(z) =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1, z ∈ C

(4)

cos(z) =

∞∑
n=0

(−1)n

(2n)!
z2n, z ∈ C

4/20
[FIRST 2 MINS REWATCH]
There are two ways of finding a function’s Taylor expansion. We can plug and chug, using the

formula, or we can use expansions of functions we already know.

5.1.1 Negative Powers of (z − z0)

[EXPLANATION] If the function f explodes at z0, it can still be possible to expand in terms of
positive and negative powers of (z − z0).

Example. Let f(z) = ez−1
z3 . The limit of this function as z → 0 is infinity, in the complex sense.

We have that

ez − 1 =

∞∑
k=1

zk

k!

therefore,

f(z) =
1

z3

∞∑
k=1

zk

k!
=

∞∑
n=−2

zn

(n+ 3)!

which can be written as

f(z) =
1

z2
+

1

2z
+

∞∑
n=0

zn

(n+ 3)!

Next, we can try to expand a function in terms of powers.

Example. Let

f(z) = z3 cosh

(
1

z

)
Then if z 6= 0, our taylor expansion formula is

cosh(1/z) =

∞∑
k=0

(
1
z

)2k
(2k)!
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now if z 6= 0, we can write

cosh(1/z) =

∞∑
k=0

(
1
z

)2k
(2k)!

=

∞∑
k=0

1

z2k−3(2k)!

= z3 +
z

2
+

∞∑
k=2

1

z2k−3(2k)!

= z3 +
z

2
+

∞∑
n=0

1

z2n+1(2n+ 4)!

5.2 Laurent Series

In this section, we will show that such an expansion of positive and negative powers of (z − z0) is
always possible in certain regions, even if f is not holomorphic at z0.

Theorem 5.2.1 (Laurent’s Theorem). Let z0 ∈ C and 0 ≤ r1 < r2. Let f be holomorphic in the
annular domain

D = {z : r1 < |z − z0| < r2} .
Let γ be a positively oriented, simple closed contour around z0 in D. Then for any z ∈ D, we have
that

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn(z − z0)−n (9)

where

an =
1

2iπ

∮
γ

f(w)

(w − z0)n+1
dw

bn =
1

2iπ

∮
γ

f(w)

(w − z0)−n+1
dw = a−n.

The above is called a Laurent series expansion at z0.

Proof. If you remember the proof of Taylor’s theorem, the idea was to write the partial sum, use
the Cauchy integral formula, as well as the geometric sum formula, and then bound the difference
and let it go to 0. The proof of this theorem relies on considering two positively oriented, cicrcular
contours γ1 and γ2 of radii ρ1 and ρ2 which are arbitrarily close to the circles with radii r1 and r2.
let γ′ be a simple closed contour around z lying between γ1 and γ2. Then∮

γ2

f(w)

(w − z)
dw =

∫
γ′

f(w)

w − z
dw +

∫
γ1

f(w)

w − z
dw

which is a fact we proved a few sections ago about multiply connected domains. By the cauchy
integral formula, ∮

γ′

f(w)

w − z
dw = 2iπf(z)

since f is analytic in the annulus. Therefore,

f(z) =
1

2iπ

∫
γ2

f(w)

w − z
dw − 1

2iπ

∫
γ1

f(w)

w − z
dw.

Then we have the following two claims we can make:
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(1) The first term is that the integral around γ2 is equal to

∞∑
n=0

an(z − z0)n

(2) The second term, the integral around γ1, is

−
∞∑
n=1

bn(z − z0)−n

The proof of both of these claims is proved in a really similar way to Taylor’s theorem.

Remark. Since bn = a−n we may write the Laurent series as

f(z) =
∑
n∈Z

an(z − z0)n.

Remark. If f is holomorphic throughout the disk of radius r2, then this theorem gives the Taylor
series of f at z0, from the genearl Cauchy integral formula; the bn’s mean that we get the product
of two holomorphic functions so the integral is simply 0 by the Cauchy-Goursat theorem.

Generlly speaking, we do not use the integral representation of an and bn to find the Laurent
series. Rather, we use the usual Taylor expansion as in the previous section.

Laurent’s theorem can help to predict the domain(s) in which an expansion will be valid.

Example. Let

f(z) =
1

z(z2 + 1)
=

1

z(z − i)(z + i)

and the goal is to get an expansion in powers of z, or where z0 = 0. Now we can consider the domain
D1 where 0 < |z| < 1. Our second domain can be everywhere outside of this disk of radius 1, or
D2 given by 1 < |z| <∞. These are two annuli where we can expect a Laurent series expansion to
hold. On D1, we can use the familiar formula

1

1 + z2
=

1

1− (−z2)

=

∞∑
n=0

(−z2)n

=

∞∑
n=0

(−1)nz2n

=
1

z
+

∞∑
k=0

(−1)k+1z2k+1.

For the other domain D2,

1

1 + z2
=

1

z2
× 1

1− (−1/zn)

=
1

z2

∞∑
n=0

(
−1

z2

)n
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Therefore, multiplying everything by 1/z, we get

f(z) =
1

z3

∞∑
n=0

(
−1

z2

)n
=

∞∑
n=0

(−1)nz−2n−3.

4/22 SKIPPED FIRST 30 MINUTES
Therefore, (anr

n)n≥0 is bounded if and only if r ≤ 1
2 .

etc

Remark. If 0 ≤ q < 1 and α ∈ R ,then nαqn → 0. Moreover, if q > 1 and α ∈ R, then nαqn →∞
as n→∞. Lastly, if q > 0, then n!qn →∞ and qn

n! → 0 as n→∞.

Theorem 5.2.2. Let
∞∑
n=0

an(z − z0)n

be a power series with radius of convergence R. If |z − z0| < R, then the series is absolutely
convergent; if |z − z0| > R, then the series diverges.

Proof. Let r = |z−z0| < R. Fix some ρ such that r < ρ < R. Since ρ < R, we know that (anρ
n)n≥0

is bounded. So there is an M > 0 such that

|anρn| ≤M

for any n. Therefore,

|an(z − z0)|n = |an| rn

= |anρn| ×
(
r

ρ

)n
≤M ×

(
r

ρ

)n
.

Since 0 ≤ r/ρ < 1, we know that
∞∑
n=0

M ×
(
r

ρ

)n
converges. Therefore, our original sum

∞∑
n=0

an(z − z0)

converges absolutely.
Next, let r = |z − z0| > R. Since r > R, we know that (anr

n)n≥0 is not bounded. Therefore,
(an(z − z0)n)n≥0 is not bounded because the moduli of both are the same. Therefore,

∞∑
n=0

an(z − z0)n

diverges.

Exactly on the circle of radius R, the series can be convergent or not. Indeed, it may even depend
on the point z on the circle.

Not covered: Theorem 2 in section 69, which introduces uniform convergence. Skipped is section
70 which covers a tool for proofs, weaker than the following results.
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5.3 Integration and Differentiation of Power Series

Theorem 5.3.1 (Uniformity of Power Series). Let f(z) =
∑
an(z − z0)n be a power series with

radius of convergence R. Let D = {z : |z − z0| < R}. Then the following is true:

(1) f is analytic on D and f ′(z) =
∑∞
n=1 ann(z − z0)n−1 for any z ∈ D.

(2) If γ ⊂ D, and g is continuous on γ, then∫
γ

g(z)f(z)dz =

∞∑
n=0

an

∫
γ

g(z)(z − z0)ndz.

Proof. Relies on uniform convergence.

In general, as known from analysis, one cannot switch the order between differentiation and
integration and an infinite sum.

Example. We have seen that if |z − 1| < 1, then

1

z
=

1

1− (1− z)
=

∞∑
n=0

(1− z)n =

∞∑
n=0

(−1)n(z − 1)n

For any |z − 1| < 1, we can differentiate and multiply by -1 to get

1

z2
=

∞∑
k=0

(−1)k(k + 1)(z − 1)k.

Moreover, we can use power series to prove holomorphicity.

Example. Consider

f(z) =


ez − 1

z
z 6= 0

1 z = 0.

We can summarily prove that f is holomorphic on C. The first approach would be to use differen-
tiation rules to prove that f is holomorphic on C∗, and then treat f is differentiable at 0 using the
definition. Alternatively, we can write f as a power series. For z 6= 0,

f(z) =

∞∑
k=0

zk

(k + 1)!

which also works for z = 0. Therefore, since the radius of convergence of this power series is infinite,
we have holomorphicity on C.

4/27
So far, we have seen that if f is analytic on a disk, it will be equal to its taylor series. If we are

on an annular domain, then we can represent f by a Laurent series. If f is a power series, then f is
analytic on the disk of convergence. We can now write a similar result for Laurent series

Theorem 5.3.2 (Uniformity of Laurent Series). Let

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn(z − z0)−n

be a series converging at any point z in an annular domain D centered at z0. Then:
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(1) f is analytic on D and

f ′(z) =

∞∑
n=1

nan(z − z0)n−1 +

∞∑
n=1

−nbn(z − z0)−n−1

(2) if γ is a contour included in D and g is a continuous function on γ, then∫
γ

g(z)f(z)dz =

∞∑
n=0

an

∫
g(z)(z − z0)ndz +

∞∑
n=1

bn

∫
g(z)(z − z0)ndz

Proof. This can be shown via the above theorem and a change of variables in contour integrals.

5.4 Uniqueness of Series Representations

In all our examples thus far, we have assumed that each function had a unique power series repre-
sentation. This is indeed true, but it is a result that must first be proven.

Theorem 5.4.1. Let z0 ∈ C and r > 0. Let f be a function. Assume that

f(z) =

∞∑
n=0

an(z − z0)n

for any |z − z0| < r. This series is the Taylor series of f at z0. That is,

ak =
f (k)(z0)

k!

for any k ≥ 0.

Proof.

(1) (Case k = 0). Then we have that

f(z0) =

∞∑
n=0

an0n = a0.

Then we have that

a0 = f(z0) =
f (0)(z0)

0!

(2) (Case k = 1). We have not yet assumed that f is analytic, but note that the power series∑
an(z − z0)n is converging at any point on the disk {z : |z − z0| < r} so its radius of

convergence ≥ r. Therefore, f(z) is holomorphic on this disk, and we have that

f ′(z) =

∞∑
n=1

ann(z − z0)n−1

so f ′(z0) = a1 · 1 · 00 = a1 so therefore

a1 =
f ′(z)

1!
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(3) (Inductive Hypothesis). By induction, we can prove that

f (k)(z) =

∞∑
n=k

ann(n− 1) · · · (n− (k − 1))(z − z0)n−k

for any |z − z0| < r. So then

f (k)(z0) = akk(k − 1)(k − 2) · · · (k − (k − 1))× 00

which gives us

ak =
f (k)(z0)

k!

as desired.

Let us now write the same theorem for Laurent series:

Theorem 5.4.2 (Uniqueness of Laurent Series Expansion). Let z0 ∈ C and D be an annular domain
centered at z0. Let f be a function. Assume that

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn(z − z0)−n

Then we have

ak =
1

2iπ

∫
γ

f(z)

(z − z0)k+1
dz

bk =
1

2iπ

∫
γ

f(z)

(z − z0)−k+1
dz

for any simple closed contour γ around z0 included in D. Note that in particular this means that
the representation does not depend on the γ we choose, by the principle of deformation of paths.

First, we must prove a lemma:

Lemma 5.4.3. We claim that

1

2iπ

∫
γ

(z − z0)`dz =

{
0 ` 6= −1

1 ` = −1.

Proof.

1. If ` ≥ 0, we can apply Cauchy-Goursat.

2. If ` < 0, we can apply the Cauchy integral formula with g(z) = 1:

1

2iπ

∫
γ

(z − z0)`dz =
1

2iπ

∫
γ

g(z)

(z − z0)(−`−1)+1
dz

=
g(−`−1)(z0)

(−`− 1)!

=

{
0 ` 6= −1

1 ` = −1.
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Now we can prove the theorem:

Proof. First, note that from theorem THEOREM, we know that f is holomorphic on the domain.
For any k ∈ Z, we can integrate term by term so thus

1

2iπ

∫
γ

f(z)

(z − z0)k+1
dz =

∞∑
n=0

an
1

2iπ

∫
γ

(z − z0)n

(z − z0)k+1
dz +

∞∑
n=1

bn
1

2iπ

∫
γ

(z − z0)−n

(z − z0)k+1
dz

Now from the previous lemma, we can replace ` = n− k − 1. If k ≥ 0 then the integral

1

2iπ

∫
γ

f(z)

(z − z0)k+1
dz

is just ak. If k < 0 then the integral is b−k. This proves the theorem.

5.5 Uniquely Determined Holomorphic Functions

Now we can talk about the Taylor or Laurent series on a given domain. What comes next is an
important result we alluded to in earlier sections: if a holomorphic function’s values are known on
a large enough set (e.g., a line segment), then this is enough to completely determine the function
elsewhere on a domain. Lemma (theroem 3 sec 82)

Lemma 5.5.1. Let z0 ∈ C, r > 0, and let f be a function holomorphic on

D = {z : |z − z0| < r}.

Assume that f = 0 on a line segment of positive length containing z0. Then f = 0 on D.

Proof.

(1) If f is holomorphic and f = 0 on L, then f ′ = 0 on L. This is true because We can consider
h approaching 0 such that z + h is on L. Then f(z + h) = f(z) = 0. Therefore, f ′(z) = 0.

(2) By induction, using step (1), then we can deduce that f (n) = 0 on L for all n ≥ 0.

(3) We have that f is holomorphic on the disk D. By Taylor’s theorem, we know that there is a
power series expansion on the disk D given by

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

However, we know that from step (2), the derivatives are all identically 0. Therefore, f(z) = 0
for any z ∈ D.

Now instead of disks, we want a theorem which is true for any domain D, and we want this to
be true for a function g which is also holomorphic.

Theorem 5.5.2. Let D be a domain, and let f, g be holomorphic on D. If f = g on a line segment
L included in D, then f = g on all of D.
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Proof. If the theorem is true with g = 0, then for a general g, we can consider the function (f−g) = 0
on the line segment, which is holomorphic.

Now we can consider the case with g = 0. For any other poin w ∈ D, we know that there is a
polygonal line connecting z and w. Moreover, since D is open by definition, we can chain multiple
overlapping disks which are completely included in D. Then we can propagate the information all
the way over to w.

Example. We know that sin(2θ) = 2 sin(θ) cos(θ) for θ ∈ R. Then this can be expanded to include
all complex numbers. Let f(z) = sin(2z) and g(z) = 2 sin(z) cos(z). Then without any computations,
we know that this is true for all of C.
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4/29

6 Residues and Poles

With the new theory developed and tools from series, we will be able to evaluate problematic integrals
such as ∮

γ

1

sin(z)
dz,

∮
γ

sin

(
1

z

)
dz

for which the Cauchy integral formula cannot be applied due to the singularities on or in the interior
of the contour γ. We will define a class of these singularities in order to learn how to deal with them.

6.1 Isolated Singular Points

Recall that a singularity or a singular point z0 of a function f is a point such that:

(1) f is not holomorphic at z0, and

(2) f is holomorphic at some point in each neigborhood of z0.

For instance, the set D of points where f is holomorphic is always an open set. This is a
consequence of the definition of holomorphicity. Moreover, the union of open sets is always open.

Moreover, the singularities of f are the points on the boundary ofD, assuming there is a boundary.
In general, if D = C, then we consider it not to have a boundary. We will, however, take time to
discuss the point at infinity. Sometimes, it may make sense to consider the point∞ as the boundary
of the entire claim.

Definition 6.1.1 (Isolated Singularity). Let f be a function. A point z0 is an isolated singularity
of f if

(1) f is not holomorphic at z0 and

(2) There is a deleted neighborhood of z0 on which f is analytic.

Note that this definition is much stronger. That is,

isolated singularity ⇒ singularity.

We can think of these as “pinpricks” in the set D where f is holomorphic. Note that the boundary,
which consists of singularities, do not have deleted regions such that f is holomorphic.

Example. The function

f(z) =
z

(z − 1)(z2 + 4)

is holomorphic on C \ {1, 2i,−2i}.

Example. Consider the function f(z) = Log(z). This is holomorphic on C \ R−. Note that since
this is a line, no point on that line can be considered an isolated singularity, since any deleted
neighborhood will contain singularities.

Example. Lastly, consider the surprising example:

f(z) =
1

sin (π/z)
.
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This function is not defined at z = 0 as well as the zeroes of sin(π/z) so when z = 1/n where
n ∈ Z \ {0}. Therefore, we can say that f is defined on

C \
{

0,±1,±1

2
,±1

3
, . . .

}
and it is holomorphic on this set by the rueles of differentiation. Each of the points 0 and 1/n
are singularities. However, the only singularity which is not isolated is 0, and the rest are isolated.
Around each of the singularities of the type ±1/n, we can construct a deleted neighborhood of
radius 1/n + 1 where we do not encounter singularities. However, by the archimedian property of
the integers, we cannot do something similar for 0.

Definition 6.1.2. If for some r > 0 the function f is holomorphic on the set {z : |z| > R}, then ∞
is said to be an isolated singularity of f .

6.2 Residues

Let z0 be an isolated singularity of a function f . Then by definition, there is an r > 0 such that f
is holomorphic on the annular domain given by

{z : 0 < |z − z0| < r}.

By Laurent’s theorem, we know that f has an expansion on this radius:

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn(z − z0)−n, 0 < |z − z0| < r

and particualrly, an and bn are uniquely defined and given by contour integrals. We know that

b1 =
1

2iπ

∮
γ

f(z)dz

for any positively-oriented, simple closed contour γ around z0 in our set.

Definition 6.2.1. The coefficient b1 in the Laurent expansion is called the residue of f at an isolated
singularity z0. It is denoted by

Res(f, z0).

Our goal is to find
∮
γ
f(z)dz where γ is a positively-oriented simple closed contour around the

isolated singularity z0 included in our set.
The method can be sketched out in rough detail:

(1) We can first write f(z) as a Laurent series at z0 on D by any means, but not by using the
explicit formula of the integral.

(2) In particular, we need to find the coefficent b1 appearing in the term

b1
z − z0

.

There is no need to find the whole Laurent series.

(3) From this, we can conclude that∮
γ

f(z)dz = 2iπb1 = 2iπRes(f, z0)
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Now we can tackle our examples.

Example. Consider the function

f(z) = sin

(
1

z

)
We cannot apply Cauchy-Goursat since there is a singularity in our domain. For any z 6= 0,

f(z) =

∞∑
k=0

(−1)k
(1/z)2k+1

(2k + 1)!
=

1

z
+ . . .

Therefore,
Res(f, 0) = 1

so ∮
γ

f(z)dz = 2iπRes(f, 0) = 2iπ.

Example. Let

f(z) =
ez

2 − 1

z7
.

This is holomorphic on C∗. Therefore, 0 is an isolated singularity. This could be treated by the
Cauchy integral formula, but this entails taking a 6th-order derivative which is complicated. There-
fore, we elect to expand f as a Laurent series around z0:

ez
2

=

∞∑
k=0

z2k

k!

ez
2

− 1 =

∞∑
k=1

z2k

k!

ez
2 − 1

z7
=

∞∑
k=1

z2k−7

k!
= · · ·+ 1

z × 3!
+ . . .

and so considering the first negative coefficient, we see that occurs when k = 3. Thus∫
γ

f(z)dz = 2iπ × 1

6
=
iπ

3
.

As should be clear to you, using Residues can greatly simplify the calculation of certain integrals.

6.3 Cauchy’s Residue Theorem

There is a more general theorem which encapsulates what we have seen so far.

Theorem 6.3.1 (Cauchy’s Residue Theorem). Let γ be a positively-oriented simple closed contour.
If f is holomorphic on and within γ, except at finitely many singular points (hence isolated singular
points) on the interior of γ, then ∮

γ

f(z)dz = 2iπ

n∑
k=1

Res(f, zk).
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Proof. Since there are finitely many singular points in the interior, these are isolated singularities.
We can choose small enough positively-oriented circular contours γ1, . . . , γn around z1, . . . , zn such
that f is holomorphic on and within γk except at zk, for all 1 ≤ k ≤ n. Since f is holomorphic on
the cotours, then by theorem [THEOREM], we know that the integral is equal to∮

γ

f(z)dz =

n∑
k=1

∫
γk

f(z)dz.

But for each k, we know that ∫
γk

f(z)dz = 2iπRes(f, zk)

since f is holomorphic on a deleted neighborhood of zk containing γk. This completes the proof.

Note that there are no disk constraints for this theorem,

Example. Consider the function

f(z) =
ez − 1− z
z3(z − 1)

.

INCL IN NEIGHBORHOOD
can best work w neighborhoods whne we dont need to specify ε. For our purposes, a neighborhood

is circular. However, from a topological viewpoint, we can construct a topology from balls or from
open sets. Therefore, we really do not lose any properties.

5/4 Most of the time, the way to find Laurent Series is to use known expansions to compute
them. In particular, if we want to expand the series around 0 (in order to get the answer in terms
of z and its powers), then

Example. Consider the example

f(z) =
1

z − z0
.

Then
1

z − z0
= − 1

z0
× 1

1− (z/z0)
=

1

z
× 1

1− (z0/z)

Then we know that we can use the geometric series, provided that |z/z0| < 1 for the first one and
|z0/z| < 1 for the second. Then we get

− 1

z0

∑(
z

z0

)n ∣∣∣∣ zz0
∣∣∣∣ < 1

1

z

∑(z0
z

)n ∣∣∣z0
z

∣∣∣ < 1

For a square, we can do a similar trick and get

1

(z − z0)2
=

1

z20
× 1

(1− z/z0)2
=

1

z2
× 1

(1− z0/z)2

and do the expansion
1

(1− w)2
=
∑

(n+ 1)wn

where we obtain this by differentiating the geometric series, and |w| < 1.
If we want to expand the above around 1, then

1

z − z0
=

1

(z − 1)− (z0 − 1)

and do the same as before with z − 1 instead of z.
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Concerning power series, keep in mind the theorem of section 69:
Let

f(z) =
∑

an(z − z0)n

and assume that the series converges for a given point z1. We do not know the radius is convergent,
since we don’t know the an. However, since we know that the radius of convergence R is a disk,
then everywhere outside this disk, |z − z0| > R then the series diverges. Therefore, |z1 − z0| ≤ R.
This is a lower bound for the radius of convergence. Moreover, the series is converging for any z
such that |z − z0| < |z − z1|.

Note the strict inequality; we cannot say anything about the boundary, since some series do not
converge everywhere on the boundary:

f(z) =

∞∑
n=1

zn

n

since R = 1. The series diverges at 1 but converges at −1.

6.4 The Residue at Infinity

Let f be a function such that ∞ is an isolated singularity. What we mean by this is that there is
some R1 > 0 such that f is holomorphic on

D = {z : |z| > R1}.

Note that this domain is annular centered at 0. Therefore, we can apply Laurent’s theorem. We get
a unique expansion of the form

f(z) =

∞∑
n=0

anz
n +

∞∑
n=1

bnz
−n

for z ∈ D.

Definition 6.4.1. The residue of f at ∞ is defined at

Res(f,∞) = −b1.

The point of the above definition is to aid in the computation of integrals.

Theorem 6.4.1. Let γ be a positively oriented simple closed contour. Let f be holomorphic on
and outside γ. Then ∮

γ

f(z)dz = −2iπRes(f,∞) = 2iπRes

(
1

z2
f(1/z), 0

)
. (10)

Proof. We can look at a circle of radius r1 centered around 0 such that the contour γ is completely
contained in the circle. We know that f is holomorphic outside the contour, so in particular it is
holomorphic outsidfe of this disk. Then we can expand f(z) outside of this circle:

f(z) =

∞∑
n=0

anz
n +

∞∑
n=1

bnz
−n

for |z| > r1 where

b1 =
1

2iπ

∫
γ′
f(z)dz
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for any contour γ′ contained in {z : |z| > r1}. In particular,

1

2iπ

∫
γ′
f(z)dz = −2iπRes(f,∞).

By the principle of deformation of paths,∫
γ

f(z)dz =

∫
γ′
f(z)dz.

since f is holomorphic on γ, γ′, and everywhere between.
To prove the second part, we will prove that

Res(f,∞) = −Res

(
1

z2
f

(
1

z

))
.

If |z| < 1/r1, then |1/z| > r1, so we can expand the Laurent series, using 1/z instead of z:

1

z2
f

(
1

z

)
=

1

z2

( ∞∑
n=0

an

(
1

z

)n
+
∞∑
n=1

bn

(
1

z

)−n)

=

∞∑
n=0

anz
−2−n +

∞∑
n=1

bnz
−2+n

= · · ·+ a0
z2

+
b1
z

+ b2 + . . .

which completes the proof.

Most of the time, we use the second conclusion of this thorem to simplify computations. One
can use Cauchy’s residue theorem, but if there are multiple singularities in the interior of a contour,
we may opt to do this method.

Example. Consider the function

f(z) =
z4

(z4 − 1)(z − 2)
.

Note that f is holomorphic on C \ {1,−1,−,−i, 2}. Therefore, if our simple closed contour γ is
outside of all the singularities, then∫

γ

f(z)dz = 2iπRes

(
1

z2
f(

1

z
), 0

)
.

Then
1

z2
f

(
1

z

)
=

1

z2
× (1/z)4

((1/z)4 − 1)(1/z − 2)
=

1

z
× 1

(1− z4)(1− 2z)

For this function, there are singularities at 0 due to the first multiplicative term. If we label the
second term g(z), then g(z) is holomorphic on the disk centered at 0 of radius 1/2. By Taylor’s
theorem, we can write g(z) as a series. Therefore,

1

z2
f(

1

z
) =

1

z
g(z) =

a0
z

+ a1 + a2z + . . . |z| < 1

2

Clearly,

Res

(
1

z2
f

(
1

z

))
= a0 = g(0) = 1.

Therefore, ∮
γ

f(z)dz = 2iπ.
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This method we used for finding the residue will be generalized in later section. Moreover, we
should just focus on finding the term with z in the denominator.

6.5 Classifying Isolated Singularities

Let f be a function with an isolated singularity at z0. Then, recalling the definition, we know that
there is a ball around z0 on which f is holomorphic except at z0. By Laurent’s theorem, this function
has an expansion. There are 3 cases for this:

Definition 6.5.1 (Removable Singularity, Essential Singularity, Pole). Let f be a function with an
isolated singularity at z0. Then

(1) If all the bn’s are zero, then z0 is said to be a removable singularity for f . By setting f(z0) = a0,
this defines a function which is holomorphic at z0. This effectively “removes” the singularity,
since the function seems to have an artificial isolated point. In this case,

Res(f, z0) = 0.

(2) If infinitely many bn are nonzero, then z0 is said to be an essential singularity.

(3) If finitely many bn are nonzero, then there is an integer m ≥ 1 such that bn = 0 for n > m.
Then we say that z0 is a pole of order m. That is,

f(z) =

∞∑
n=0

an(z − z0)n +
b1

z − z0
+ · · ·+ bm

(z − z0)m
.

Let us now consider a few examples of these singularities.

Example. Let

f(z) =
1− cos(z)

z2

for z 6= 0. Moreover, f has an isolated singularity at z0. For z 6= 0,

f(z) =
1

z2

(
1−

∞∑
n=0

(−1)n
z2n

(2n)!

)

=
1

z2

∞∑
n=1

(−1)n−1
z2n

(2n)!

=

∞∑
n=1

(−1)n−1
z2(n−1)

(2n)!

=

∞∑
k=0

(−1)k
z2k

(2k + 2)!

Notice that we only have non-negative powers of z. Therefore, it is a removable singularity. Then
set f(0) = 1/2, and sp f is holomorphic at 0.

Example. Suppose
f(z) = cos(1/z)

for z 6= 0. Then

f(z) =

∞∑
n=0

(−1)n
z−2n

(2n)!
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and

b2n =
(−1)n

(2n)!
6= 0

but b2n+1 = 0.

Example. Let

f(z) =
1

z2(2− z)
.

We see that f has 2 singularities, one at 0 and the other at 2. At z0 = 0,

f(z) =
1

2z2
× 1

1− z/2

=
1

2z2

∞∑
n=0

(z
2

)n
|z| < 2

=
1

z2
+

1

4z
+

1

8
+

z

16
+ . . .

so 0 is a pole of order 2, and Res(f, 0) = 1/4. We can do simular computations for z0 = 2, and we
find that it is a pole of order 1 whose residue is [RESIDUE].

[END OF LECTURE] If you have a function holomorphic except at finitely many point, then in
particular we have that infinity is an isolated singularity, since we can enclose all of them.

For a given contour, by deformation of paths, we can compute small circles around the singular-
ities on the outside of our contour. Then let γ enclose some of the singularities, and γ1 enclose z1
and γ2 enclose z2. ∮

γ′
=

∫
γ

+

∫
γ1

+

∫
γ2

And so ∫
γ

f(z)dz = −2iπ (Res(f,∞) + Res(f, z1) + Res(f, z2))

So note that singularities on the outside, we have negative contributions; hence, we considered
∞ to be a point exterior to all of C.

5/6

6.6 Residues at Poles

[FIRST 8 MINS]

Theorem 6.6.1. Let z0 be an isolated singularity of a function f . Let m ≥ 1 be an integer. Then
the following are equivalent:

1. There is a function φ, analytic and nonzero at z0, such that

f(z) =
φ(z)

(z − z0)m

for z in a deleted neighborhood at z0.

2. The point z0 is a pole of order m.

Moreover, if (1) and (2) are true, then

Res(f, z0) =
φ(m−1)(z0)

(m− 1)!
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Proof. 1. Suppose there exists such a function φ satisfying property (1). Let N be a neighborhood
of z0. Since f is holomorphic on N , then we can select φ such that

φ(z)

(z − z0)m

and φ(z0) 6= 0. By Taylor’s theorem,

φ(z) =

∞∑
n=0

an(z − z0)n

for z ∈ N . Then, if z 6= z0,

f(z) =
φ(z)

(z − z0)m
=

∞∑
k=−m

ak+m(z − z0)k.

which is
a0

(z − z0)m
+ · · ·+ am−1

(z − z0)
+

∞∑
k=0

ak+m(z − z0)k.

Since a0 = φ(z0), which is nonzero, then z0 is a pole of order m for f . Moreover, we want the
residue, which is

Res(f, z0) = am−1 =
φ(m−1)(z0)

(m− 1)!

2. Exercise.

How do we use this? If f is a function with an isolated singularity at z0. Then we could attempt
to classify the type of singularity, as in the previous section. One way to do this is to expand f as
a power series. We can show that z0 is a pole, and find its order. We write f as

f(z) =
φ(z)

(z − z0)m

for some m ≥ 1 and some φ. The method is to check that φ is holomorphic and nonzero at z0, and
then by the theorem, conclude that z0 is a pole of order m.

The second typical question would be to find the residue of f at this point. The method for this
is very similar; we do the first two steps, but then conclude by the theorem that

Res(f, z0) =
φ(m−1)(z0)

(m− 1)!
.

Remark. Let γ be a POSCC simple closed contour around z0. Assume that f is holomorphic on
and within γ, except at z0. Then by Cauchy’s residue theorem,∮

γ

f(z)dz = 2iπRes(f, z0).

If one can write

Res(f, z0) =
φ(z)

(z − z0)m

for some m ≥ 1 and φ holomorphic and nonzero at z0, then the equality becomes∮
γ

φ(z)

(z − z0)m
dz = 2iπ

φ(m−1)(z0)

(m− 1)!

which is just the Cauchy integral formula.
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In this sense, Residues are stictly stronger than the Cauchy integral formula, in terms of efficiency.
Using Cauchy’s reidue theorem and the theorem above accoplishes this for a larger set of problems.

Thus, we can see some instances of the above two questions.

Example. Let

f(z) =
z − i

(z + 1)(z − 2)2
.

We want to find the singularities of f , and find the integral of f centered at 0 on a circle of radius
3. Suppose f is holomorphic on C \ {−1, 2}. At z0 = −1,

f(z) =
φ(z)

z + 1

where

φ(z) =
z − i

(z − 2)2

and φ(−1) = − 1
9 (1 + i) 6= 0. Thus, we conclude that -1 is a pole of order 1, and the residue is

Res(f,−1) = φ(−1) = −1

9
(1 + i).

At z0 = 2, then we write

f(z) =
ψ(z)

(z − 2)2
,

where

ψ(z) =
z − i
z + 1

and ψ(2) 6= 0. Thus, 2 is a pole of order 2, and

Res(f, 2) =
ψ(1)(2)

1!
=

1 + i

(z + 1)2
=

1

9
(1 + i)

By Cauchy’s residue theorem, the integral around γ is∮
γ

f(z)dz = 2iπ (Res(f,−1) + Res(f, 2)) = 0.

We want to know when we should use this technique or to simply expand the function. The
following is an illustration when the original technique is more effective.

Example. Let

f(z) =
ez − 1

z5
.

In order to find the integral around 0, we can first try to use the above method, with φ(z) = ez − 1.
However, as you can see, this doesn’t work since φ(0) = 0. Thus, this function is not a pole of order
5, so it is compensating for some of the irregularity at 0.

Our second try can be φ(z) = (ez − 1)/z, which is 1 at φ(0). Moreover, φ is holomorphic, since
it can be written as a power series, and so the residue is given by

Res(f, 0) =
φ(3)(0)

3!
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The efficient way to find φ(3)(0) is to use the power series expansion of φ(0). All of this is not
very efficient and we should directly expand f(z) as a Laurent series in order to find the residue.
Therefore,

f(z) =
1

z5

∞∑
k=1

zk

k!

and so we only need to find the term when k = 4. Therefore,

Res(f, 0) =
1

4!

and ∮
γ

f(z)dz =
iπ

12
.

So how do we decide between the two? You should assess if expansion is difficult.

Example. Let

f(z) =
(Log(z))2

(z2 + 4)2
=

(Log(z))2

(z − 2i)2(z + 2i)
.

Thus, f is holomorphic on C \ ({2i,−2i} ∪ R−). Thus, in order to compute the integral, we must
find the residue of f at 2i. Thus,

f(z) =
φ(z)

(z − 2i)2

with

φ(z) =
(Log(z))2

(z + 2i)2

and φ(2i) 6= 0. Therefore,
Res(f, 2i) = φ′(2i) = . . .
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