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1 Sets and Functions

1.1 Sets

Naively, we can understand a “set” to simply mean something which contains unique objects. For
instance,

{1, 3, 4, 8, 6}

is a set. Note that the contents of this set do not have to be in any particular order, and can be
rearranged without distrubing the uniqueness of the set. That is, the set {1, 2, 3, 4} is equivalent
to the set {4, 1, 2, 3, 3}. A set is considered a type of object, so it is meaningful to talk about sets
within sets.

For finite sets, it may suffice to put each object down in writing. For infinite sets, we are allowed
to define a set that contains everything that obeys a certain property P :

A = {x : P (x)}.

If P is the property that x > 0, we have the set of positive numbers (the colon is to be read as “such
that”). If x is contained in the set A, we call x and element or member of A, and denote it by the
expression

x ∈ A.

Similarly, if x is not in A, we write
x /∈ A.

This leads rise to the notion of set equality:

Definition 1.1.1 (Set equality). A set A is equal to a set B if they have the same elements. That
is A = B if and only if whenever x ∈ A, x ∈ B, and whenever y ∈ B, y ∈ A.

We also have notions of combining sets, and finding common elements.

Definition 1.1.2 (Union and Intersection). For sets A and B, we define the union of A and B to
be

A ∪B = {x : x ∈ A or x ∈ B}

and the intersection of A and B to be

A ∩B = {x : x ∈ A and x ∈ B}.

This definition of sets extends easily into multiple, and perhaps infinitely many, sets. If A =
{A1, A2, . . . } is a set of sets, then we define

∪A =

∞⋃
n=1

An = {x : x ∈ Ai for some Ai ∈ A}

and

∩A =

∞⋂
n=1

An = {x : x ∈ Ai for every Ai ∈ A}

Sets do not necessarily have to contain elements. We are free to define the empty set :

Definition 1.1.3 (Empty Set). There exists a set ∅ known as the empty set. This set contains no
elements; that is, for every x we have x /∈ ∅. Moreover, this set is unique; if we have ∅ and another
empty set ∅′, it follows from the contrapositive of Definition 1.1 that ∅ = ∅′.

Certain sets appear to be larger than other sets. From this, we can describe the notion of subsets.
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Definition 1.1.4 (Subset). A set A is a subset of a set B, denoted A ⊆ B, if for any object x,

x ∈ A⇒ x ∈ B.

If A ⊆ B but A 6= B, then we say that A is a proper subset of B and we denote it A ⊂ B.

Definition 1.1.5 (Set Difference). If A and B are sets, the difference of A and B is

A \B = {x : x ∈ A and x /∈ B}.

For instance, if A = {1, 2, 3} and B = {2, 3, 4}, then A \B = {1}.
Sometimes, if we are working with sets which are all subsets of a larger set U , we typically call

U the universe in which we are working. When we work with sets of integers, U could be the set of
all integers, Z. If we are working in a fixed universe U , then it makes sense to define complements.

Definition 1.1.6. We define the complement A′ (sometimes Ac or Ā) of A by

A′ = U \A

We can now state the basic properties of sets, all of which may be proven from the definitions
given in this section:

Claim (Properties of Sets). Let A,B,C be sets and let X be a set containing A,B,C as subsets.
Then the following properties hold:

1. A ∪ ∅ = A and A ∩ ∅ = ∅.

2. A ∪X = X and A ∩X = A.

3. A ∪A = A and A ∩A = A.

4. A ∪B = B ∪A and A ∩B = B ∩A.

5. (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C).

6. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (B ∪ C).

7. A ∪ (X \A) = X and A ∩ (X \A) = ∅.

8. (A ∪B)′ = A′ ∩B′, and (A ∩B)′ = A′ ∪B′.

Oftentimes in math, it is useful to consider the set of all possible subsets of a set X.

Definition 1.1.7 (Power Set). The power set of X is the set of all possible subsets of X (including
∅ and X itself). It is denoted by

P(A)

or sometimes by 2X .

1.2 Relations

Foremost, we introduce the notion of an ordered pair, and equality between ordered pairs.

Definition 1.2.1 (Ordered Pair). An ordered pair is an object of the form

(x, y)

which can equivalently be expressed in set-theoretic notation as

(x, y) ≡ {{x}, {x, y}}.

Two ordered pairs (x, y) and (x′, y′) are considered to be equal if and only if their components
match. That is,

(x, y) = (x′, y′)⇔ x = x′ and y = y′
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Notice how the set theoretic expression has an element dedicated to defining the first element,
and an element defining the second element in the pair.

Given two sets A and B, we can construct a new set consisting of ordered pairs of their elements.

Definition 1.2.2 (Cartesian Product). Given two sets A and B, we define their Cartesian Product
A×B to be:

A×B = {(a, b) : a ∈ A and b ∈ B}.

We define the Cartesian Product of n sets to be

A1 × · · · ×An = {(a1 . . . an) : ai ∈ Ai}.

The Cartesian Product of a set A with itself n times is often denoted

An = A× · · · ×A.

An ordered list of n objects is known as an n-tuple. This notion is consistent with the idea of
vectors of the form (x, y, z) ∈ R3; each “slot” of the vector is an element of R, and the order in
which the components of a vector are listed matter.

Given this notion of Cartesian Products, we would like to be able to relate elements of a set X
to one another.

Definition 1.2.3 (Relation). A relation R on X is a subset of X ×X.

R ⊆ X ×X.

We say for x, y ∈ X that xRy, or x is related to y, whenever

xRy ⇔ (x, y) ∈ R.

For instance, we can think of “greater than” to be a relation defined on R × R. Thus, R will
consist of ordered pairs (x, y) such that x > y. However, note that (y, x) and (x, x) are not an
elements of R. Particularly interesting in math are relations which satisfy certain properties and
can be thought of as a generalization of equality.

Definition 1.2.4 (Equivalence Relation). The relation R on a set X is an equivalence relation on
A if the following are satisfied:

1. (x, x) ∈ R for all x ∈ X.

2. (a, b) ∈ R⇔ (b, a) ∈ R.

3. (a, b) ∈ R and (b, c) ∈ R⇒ (a, c) ∈ R.

For a general binary relation ∼ on X, ∼ is an equivalence relation if for all x, y, z ∈ X:

1. x ∼ x

2. x ∼ y ⇒ y ∼ x

3. x ∼ y and y ∼ z ⇒ x ∼ z.

These properties are called reflexivity, symmetry, and transitivity, respectively.

Definition 1.2.5 (Equivalence Class). If X is a set and ∼ is an equivalence relation, then the
equivalence class of x, denoted [x], is

[x] := {y ∈ X : x ∼ y}
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Claim (Properties of Equivalence Classes). The following are properties of equivalence classes. For
a set X, a relation ∼, and x1, x2 ∈ X, the following are true:

1. [x1] = [x2]⇔ x1 ∼ x2.

2. [x1] ∩ [x2] 6= ∅ ⇔ [x1] = [x2].

Proof. We will now prove both of these claims:

1. Since x1 ∈ [x1], that implies x1 ∈ [x2] since the sets are equal. Therefore x1 ∈ [x2]. For the
backwards direction, we suppose y ∈ [x1]. By transitivity, y ∼ x1 and x1 ∼ x2 imply y ∼ x2,
so y ∈ [x2]. Since y ∈ [x1] ⇒ y ∈ [x2], [x1] ⊆ [x2]. By symmetry, we can arrive at a similar
conclusion for [x2] ⊆ [x1], so [x1] = [x2].

2. If we pick an x3 ∈ [x1] ∩ [x2], that means x3 ∼ x1 and x3 ∼ x2, so x1 ∼ x2 from transitivity,
and their equivalence classes are equal. For the backwardsd direction, it is clear that equality
between the calsses implies a nonempty intersection.

These equivalence classes form subsets of X, and seem to be either equal or completely disjoint.
This leads to the notion of a partition.

Definition 1.2.6 (Partition). A partition P on a set X is a subset of P(X) such that the following
properties hold:

1. For all A ∈ P , A 6= ∅,

2. For all A,B ∈ P , A 6= B ⇒ A ∩B = ∅, and

3.
⋃
A∈P

A = X.

In plain English, it is a collections of disjoint subsets of X whose union equals X.

Definition 1.2.7 (Quotient Set of a Relation). The quotient set of the set X by a relation ∼ is
denoted X/∼ and is given by:

X/∼ := {[x] : x ∈ X}.

Note that X/∼ ⊂ P(X).

We will now demonstrate that the set of all equivalence classes given by ∼ form a very natural
way to partition the set X. Indeed, all an equivalece relation is is a partition on X, and all a
partition is is an equivalence relation.

Theorem 1.2.1 (The Quotient Set is a Partition). Partitions and equivalence relations are equiv-
alent. That is, every partition denotes an equivalence relation, defined by

x ∼ y := ∃A ∈ P : x, y ∈ A,

and every equivalence relation ∼ forms a set X/∼ that is a partition on X.

Proof. We show that every Partition is an equivalence relation, as defined in the previous theorem.

1. x ∼ x, since we know from condition 3 of Definition 1.2.6 that there is an A : x ∈ A.

2. x ∼ y ⇒ ∃A ∈ P : x, y ∈ A⇒ y ∼ x.

3. x ∼ y ⇒ ∃A ∈ P : x, y ∈ A. y ∼ z ⇒ ∃B ∈ P : y, z ∈ B. Therefore, A ∩ B 6= ∅ so from
condition 2, A = B. Therefore x, z ∈ A so x ∼ z.
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Now we will demonstrate how the quotient set X/∼ satisfies all 3 parts of Definition 1.2.6.

1. Clearly, [x] ∈ X/∼ 6= ∅ for all x, since x ∈ [x].

2. Condition 2’s contrapositive is A ∩B 6= ∅ ⇒ A = B, which was proved previously.

3. Suppose S =
⋃

[x]∈X/∼
[x] 6= X. Then that implies the existence of an x′ /∈ S. But since x′ ∼ x′,

[x′] ∈ X/∼, so it is in S.

1.3 Functions

Definition 1.3.1 (Function). A function from a set X to a set Y is a subset f of X × Y such that

1. If (x, y), (x, y′) ∈ f , then y = y′ and

2. If x ∈ X, then (x, y) ∈ f for some y ∈ Y .

If (x, y) ∈ f , we define f(x) to equal y. The first condition ensures that each element in x can be
associated with a unique element in Y , and the second stipulates that f “captures” every element
of X. Two functions f : X → Y and g : X → Y are said to be equal if and only if f(x) = g(x) for
every x ∈ X.

From the definition of a relation as a subset of X × Y , functions are a special kind of relation.

Notation (Function). If a function f is a subset of X × Y , then we write

f : X → Y

to denote the function f from X to Y . This notation can be used for any mapping from X to Y ,
but f almost always denotes a function.

Remark (Quotient Map). Given a set X and a relation ∼, we call

π : X → X/∼
: x 7→ [x]

a quotient map.

Definition 1.3.2 (Image). If f : X → Y , and S ⊆ X, then we define the image of S under f,
denoted f(S), as

f(S) := {f(x) : x ∈ S}.

Definition 1.3.3 (Onto). A function f : X → Y is said to be onto if

f(X) = Y.

That is, for every y ∈ Y , y = f(x) for some x ∈ X. This condition is sometimes known as
“surjectivity.”

Definition 1.3.4 (One-to-one). A function f : X → Y is said to be one-to-one if

x 6= x′ ⇒ f(x) 6= f(x′)

or, equivalently,
f(x) = f(x′)⇒ x = x′.

That is, different inputs have different outputs. This condition is sometimes known as “injectivity.”
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Definition 1.3.5 (Bijectivity). A function f : X → Y is said to be bijective if it is both one-to-one
and onto.

Definition 1.3.6 (Inverse of f). If f : X → Y is a one-to-one function such that f(X) = B ⊆ Y ,
then we define the inverse of f denoted f−1, where

f−1 : B → X

such that
(y, x) ∈ f−1 ⇔ (x, y) ∈ f.

Definition 1.3.7 (Function Composition). Given functions f : X → Y and g : Y → Z, we define
the composition of g and f to be

(g ◦ f) : X → Z

where
(g ◦ f)(x) = g(f(x)).
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2 The Integers

2.1 Constructing the Integers with Peano Arithmetic

Maybe omit?

2.2 Division Algorithms

Having constructed the integers, we can apply our familiar notions of division to them. Given a
and b 6= 0, we may divide a by b to get a non-negative remainder r which is smaller than b. This
intuitive notion can be summarized with the following theorem:

Theorem 2.2.1 (Division Algorithm). Let a, b be integers, with b 6= 0. Then there exist unique
integers q and r such that

a = bq + r (2.2.1)

where 0 ≤ r < b.

Proof. proof here!!!!

Definition 2.2.1 (Divisor, Common Divisor). We say that b 6= 0 is a divisor a if a = bk for some
k ∈ Z. We denote this

b|a

and read it as “b divides a.” Note that this expression has a boolean output; that is, it is either true
or false.

We say that an integer d 6= 0 is a common divisor of a and b if

d|a and d|b

For any pair of integers, there is a common divisor that is larger than all others. This is an
important concept.

Definition 2.2.2 (Greatest Common Divisor). The greatest common divisor of two nonzero integers
a and b is the positive integer d such that d is a divisor of a and b, and for and divisor d′ of a and
b, d′|d.

With this idea in mind, we can define the function gcd : Z× Z→ Z which outputs the greatest
common divisor of the given inputs.

Theorem 2.2.2 (gcd Theorem). For nonzero integers a and b, then there exist integers m and n
such that

gcd(a, b) = ma+ nb. (2.2.2)

Moreover, the greatest common divisor is unique.

Proof. Proof here!!!!!

Definition 2.2.3 (Relatively Prime). We say two integers a and b are relatively prime if

gcd(a, b) = 1. (2.2.3)

From theorem 2.2.2, we can equivalently assert that if a and b are relatively prime, then there exist
m and n such that

ma+ nb = 1. (2.2.4)

Another way to say this is that a and b share no factors in common.

With this in mind, Euclid formulated a procedural way to determine the greatest common divisor.
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2.3 Prime Numbers

One of the most important concepts in all of mathematics is primality and prime numbers. Simply
put, a prime number is a positive number not equal to 1 that can only be divided by 1 and itself.

Definition 2.3.1 (Prime Number). An integer p > 1 is considered prime if its only divisors are ±1
and ±p.

Theorem 2.3.1. If a prime p divides the product ab, then p|a or p|b.

Proof. Suppose p does not divide a. Then we will show that p|b. From equation (2.2.1), we have
that

ab = qp

and because p does not divide a, gcd(p, a) = 1. This is because the only factors of p are 1 and p,
and we know that p and a don’t share p in common, otherwise p|a. That means there are integers
m and n such that

ma+ np = 1.

Multiplying by b,
mab+ nbp = b

into which we may substitute for ab:
mqp+ nbp = b.

Notice how we get the equation
b = (mq + nb)p

therefore p|b, as desired. And by symmetry, if p divides ab but p does not divide b, then p|a.

What follows is an important theorem in number theory.

Theorem 2.3.2 (Fundamental Theorem of Arithmetic). Let n be an integer such that n > 1. Then

n = p1p2 · · · pk (2.3.1)

where p1≤i≤k are prime numbers not necessarily distinct. Furthermore, this factorization is unique
up to arrangement. If

n = q1q2 · · · ql
where q1≤i≤k are prime, then l = k and for every pi there is a unique corresponding qj such that
pi = qj . That is, the qi’s can be rearranged.

Proof. The proof proceeds by the principle of strong induction on n. Clearly, n = 2 is a product
of primes, since 2 is prime. Now suppose the property holds for all integers r such that 1 < r < n.
If n is prime, then of course it is a product of primes. If it is not prime, then it can be written
in the form n = uv, where uv are strictly less than n. Due to the principle of strong induction,
u = pu1 · · · pum and v = pv1 · · · pvl . Therefore n is the product of these primes.

Next, we must prove that this factorization is unique for n. Again, we use strong induction.
Clearly, for n = 2 there is only one way to decompose n into primes. Now assume that this
uniqueness holds for all r in 1 < r < n, and

n = p1 · · · pk = q1 · · · ql

where p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ ql. By Theorem 2.3.1, we know that p1|qi for some i
such that 1 ≤ i ≤ l, and q1|pj for some j such that 1 ≤ j ≤ k. Since all the p’s and q’s are prime,
p1 = qi and q1 = pj . Therefore, p1 = q1 since p1 ≤ pj = q1 ≤ qi = p1. By the induction hypothesis,

n′ = p2 · · · pk = q2 · · · ql

has a unique factorization. Thus k = l and qi = pi for 1 ≤ i ≤ k.
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One might rightly ask how many primes there are. Since there are an infinite amount of numbers,
one might reasonably expect there to be infinite primes.

Theorem 2.3.3 (Infinite Primes). There exist an infinite number of primes.

Proof. Suppose there were a finite number of primes, {p1, . . . , pk}, where pk is the largest prime.
Then consider the following number

Q = p1 · · · pk + 1

If Q is prime, then we have found a prime larger than pk, and so we have a contradiction. If Q is
not prime, then because of the fundamental theorem of arithmetic, there must be a p such that p|Q.
But because p is in p1≤i≤k, that means that p must divide Q − p1 · · · pk = 1, which is impossible.
Therefore we have found a prime p that is not in the original list of primes, so we contradict the
premise that the primes may be contained in a finite list. Therefore, there are an infinite number of
primes.

2.4 Modular Arithmetic

When we divide numbers, sometimes we are left with a remainder r. We can group numbers together
if, when divided by a number n, they share the same r. This is an equivalence relation.

Definition 2.4.1 (Congruence Modulo n). Let n > 0 be a fixed integer. We say two integers a and
b are equivalent modulo n if n|(a− b). Note how this is equivalent to saying that a and b have the
same remainder r when divided by n. This is called congruence modulo n and is denoted by

a ≡ b (mod n).

Lemma 2.4.1. The basic properties of this congruence are as follows:

1. Congruence modulo n defines an equivalence relation on the set of integers.

2. This relation has n distinct equivalence classes.

3. If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n) and ac ≡ bd (mod n).

4. If ab ≡ ac (mod n), and a is relatively prime to n, then b ≡ c (mod n).

Theorem 2.4.2 (Fermat’s Little Theorem). If p is a prime number, then for any integer a,

ap ≡ a (mod p). (2.4.1)

Proof. The proof proceeds by induction on a. For a = 0, it is trivial that 0p ≡ 0 (mod p). Suppose
the identity holds for a. Then we can expand the expression

(a+ 1)p = ap +

p−1∑
i=1

(
p

i

)
ap−i + 1.

However, notice how the middle terms each have a factor of p from the binomeal coefficient (since p
is prime, it cannot be divided by the terms in the denominator). And by the induction hypothesis,
since ap ≡ a (mod p), and 1 ≡ 1 (mod p), modulo p the expression becomes

(a+ 1)p ≡ a+ 1 (mod p),

completing the proof.
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3 Groups

Having taken care of the preliminaries, we are now able to discuss the subject of this course. By
delineating very simple axioms, we get surprisingly complex algebraic structures. In a certain sense,
these structures should be seen as generalizations of set operations that are already familiar to us,
such as numbers, matricies, and the like.

3.1 Definitions and Lemmae

Definition 3.1.1 (Group). A group (G, ·) is a set G equipped with an operation · : G × G → G
such that the following axioms hold:

1. (Associativity.) a, b, c ∈ G implies that a · (b · c) = (a · b) · c.

2. (Identity element.) There exists an element e ∈ G such that a · e = e · a = a for all a ∈ G.

3. (Inverse elements.) If a ∈ G, then there exists an a−1 ∈ G such that a · a−1 = a−1 · a = e.

Often times, when the operation is clear from context, we simply say G is a group and simply
denote the product between a and b as ab. Moreover, notice how the second condition exlcudes the
possibilty of having an empty set as a group, since there must be at least one element in a group.
Lastly, the product may not necessarily commute; that is, it is not necessarily the case that ab = ba.
We have a special name for the groups whose elements commute:

Definition 3.1.2 (Abelian Group). A group G is said to be abelian (or commutative) if for every
a, b ∈ G, a · b = b · a.

Groups which do not commute are called non-abelian or non-commutative. One prominent such
example is the group of n×n matrices with nonzero determinants (why?) over R, under the canonical
product. This group is denoted as GLn(R), where AB 6= BA, in general.

Now, we will go over some useful lemmas.

Lemma 3.1.1. If G is a group, then the following hold:

1. The identity element in G is unique.

2. Every a ∈ G has a unique inverse in G.

3. For every a ∈ G, (a−1)−1 = a.

4. For all a, b ∈ G, (ab)−1 = b−1a−1.

Proof.

1. Suppose we have two identity elements, e and e′. Then by the definition of an identity,
e = e′e = e′, so e = e′.

2. Suppose a had two inverses, b and c. Then (ab)c = b(ac), since the inverse commutes and the
product is associative. But then we get ec = be, so c = b.

3. First, we prove something stronger, which is that we can cancel from the same side in a group.
That is, ax = ay ⇒ x = y. We know that each a ∈ G has a unique inverse, so we see that
a−1ax = a−1ay. By the associative law, (a−1a)x = (a−1a)y, so ex = ey. Therefore, by the
definition of the identity element, x = y. In this instance, we have that a−1(a−1)−1 = e = a−1a.
Multiplying on the left by a, we get that (a−1)−1 = a.

4. We have that b−1a−1(ab) = b−1(a−1a)b = b−1eb = e, and that (ab)b−1a−1 = a(bb−1)a−1 =
aea−1 = e.

12
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We can state the cancellation result in the following lemma.

Lemma 3.1.2 (Cancellation Laws). If G is a group, then the following are true for a, x, y ∈ G:

ax = ay ⇒ x = y

and
xa = ya⇒ x = y.

Proof. We proved the first one in the previous lemma, and the proof for the second one follows
similarly.

We now give definitions and lemmae concerning repeated applications of the product in G.

Definition 3.1.3. For a group (G, ·), we can define am, where a ∈ G and m ∈ Z:

1. If m > 0, then am := a · a · . . . · a, (i.e., a composed with itself m times).

2. If m = 0, then am := e.

3. If m < 0, then am := (a−1)|m|.

It should be verified that aka` = ak+`, and that (ak)` = ak`.

Now we define operations on subsets of groups.

Definition 3.1.4 (Subset Operations). Let A,B,C ⊆ G. Then we define the following sets:

A ·B = {a · b : a ∈ A, b ∈ B}.

A−1 = {a−1 : a ∈ A}.

It should be verified that the following properties hold:

1. A(BC) = (AB)C,

2. (A−1)−1 = A

3. (AB)−1 = B−1A−1.

3.2 Subgroups

Much like a set has subsets, or vector space has subspaces, a group has a smaller groups contained
within it.

Definition 3.2.1 (Subgroup). We say that H is a subgroup of (G, ·) if

1. H ⊆ G, and

2. H is a group under the product in G.

Immediately from this definition, we know that every group G has at least two subgroups, known
as the “trivial” subgroups. These are {e} and G itself. Now we introduce the following lemma, which
can serve as a criterion for determining whether H is a subgroup of G.

Lemma 3.2.1 (Subgroup Criteria). A nonempty subset H of G is a subgroup of G if and only if

1. (Inverse Elements.) a ∈ H ⇒ a−1 ∈ H.

13
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2. (Closure.) a, b ∈ H ⇒ ab ∈ H.

Proof. The hypothesis that H is nonempty is very important, since otherwise all the statements are
vacuously true; but since ∅ does not contain an identity element, ∅ is not a subgroup. Now we prove
the above.

If H is a subgroup of G, then clearly 1 and 2 hold.
Suppose 1 and 2 hold. Then all that needs to be verified is that the associative law holds and

that e ∈ H. But since H ⊆ G, and the associative law holds for every element G, then clearly it
holds for every element in H. Moreover, since a ∈ H, then from 1, a−1 ∈ H. From 2, we also see
that aa−1 = e ∈ H, which completes the proof.

These two criteria can be condensed down into one pithy requirement, namely that for a nonempty
subset H of G, a, b ∈ H ⇒ ab−1 ∈ H. Moreover, if H is finite and nonempty, then all that needs to
be shown is that H is closed under multiplication.

Notation. If H is a subgroup of G, then we denote it by

H ≤ G.

Lemma 3.2.2 (Subgroup Intersection). Suppose ∀α ∈ Λ, Hα ≤ G. Then

S =
⋂
α∈Λ

Hα ≤ G.

Proof. In order to show this is a subgroup, we invoke the subgroup critera lemma. Clearly, this is
nonempty since e ∈ Hα for all α ∈ Λ, so e ∈ S. Now we use the criterion that x, y ∈ H ⇒ xy−1 ∈ H
is equivalent to H is a subgroup. We have that

x, y ∈ S ⇒ x, y ∈ Hα∀α ∈ Λ⇒ xy−1 ∈ Hα∀α ∈ Λ⇒ xy−1 ∈ S.

Therefore, S is a subgroup of G.

Notice how this lemma made no mention on the size of Λ, so this lemma applies to both the
infinite case and all finite cases.

Claim. For a group G and a nonempty subset A ⊆ G, there exists a unique subgroup H of G such
that

1. A ⊆ H

2. For K ≤ G, if A ⊆ K, we have that H ⊆ K.

That is, for a subset A, there exists an H which is the smallest subgroup containing A, and H is
unique.

Proof.

1. (Existence.) Let α ∈ Λ, and ∀α,A ⊆ Kα. Then, from Lemma 3.2.2,

H =
⋂
α∈Λ

Kα.

This satisfies property 1, since for all α,A ⊆ Kα so A ⊆ H. Moreover, since we took the
intersection of all the K such that A ⊆ K, then since H is their intersection, H ⊆ Kα∀α ∈ Λ,
so property 2 is satisfied. Moreover, H is a subgroup by Lemma 3.2.2.

2. (Uniqueness.) Suppose H and H ′ are two sets satisfying the above property. Then from
property 2, H ⊆ H ′ since A ⊆ H ′. However, we also have that H ′ ⊆ H. Therefore H = H ′.

14
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3.3 Cyclic Groups

Definition 3.3.1 (Subgroup Generated by a Set). Given A 6= ∅ and A ⊆ G, we define the subgroup
generated by A to be

〈A〉 = {am1
1 am2

2 · · · : ai ∈ A,mi ∈ Z}.

This is the smallest subgroup of G containing A.

Proof. Clearly, 〈A〉 is a group containing A. Therefore, H ⊆ 〈A〉.
Next, we see that if A ⊆ H ≤ G, then 〈A〉. Since H contains A, we know that a1 ∈ H.

However, since H is a group, we have that ak1 ∈ H,∀k ∈ Z. This holds for all elements ai ∈ A, so
am1

1 , . . . , ami
i ∈ H. Since H is a group, then it must be closed under product. Therefore, we have

am1
1 am2

2 · · · ∈ H for all mi ∈ Z. However, this is just 〈A〉. Therefore, 〈A〉 ⊆ H.
Thus H = 〈A〉.

Notation. If we want to find the group generated by the singleton {a}, then we write

〈a〉 := 〈{a}〉.

Definition 3.3.2 (Cyclic Group). Let G be a group. Then we say G is cyclic if ∃a ∈ G : G = 〈a〉.
We also say that a generates G. We also define the order of a, sometimes denoted o(a), to be the
smallest positive integer n such that

an = e.

We then say |a| = n if n is finite, and if n is infinite we say |a| =∞.

Theorem 3.3.1 (Cyclic Groups are Abelian). If G is a cyclic group generated by a, then it is
abelian.

Proof. We have that for any two elements x, y ∈ G, that x = ar and y = as. Therefore,

xy = aras = ar+s = as+r = asar = yx.

Theorem 3.3.2 (Subgroup of a Cyclic Group). Let H ≤ G, and G be a cyclic group generated by
a. Then any subgroup of G is cyclic.

Proof. Let 〈a〉 be the parent cyclic subgroup, and let H be our subgroup. Let k be the smallest
positive integer such that ak ∈ H. Because H is a subgroup, H is closed under the product. Thus,
we have

ank ∈ H,n ∈ Z.

Now suppose there were an element a` ∈ 〈a〉 such that a` 6= ank for all n ∈ Z. Then by the division
algorithm, there exists an q ∈ Z such that

` = kq + r, where 0 < r < k.

Therefore, we have that
a` = akqar.

Again, because H is closed, this implies that ar ∈ H. But since 0 < r < k, that would contradict
the premise that k is the smallest positive integer such that ak ∈ H. Therefore, all elements in H
are generated by ak, so

H = 〈ak〉

so H is cyclic.

Corollary 3.3.3. All subgroups of (Z,+) are cyclic, and can be expressed as H = nZ for n ∈ N.

15
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3.4 Homomorphisms

Just like we have maps from sets to sets, or linear transformations from one vector space to another,
we would like to be able to relate groups to one another. We can do this by using special maps
called homomorphisms.

Definition 3.4.1 (Homomorphism). Let G and H be groups. Let φ : G→ H such that ∀x, y ∈ G,

φ(xy) = φ(x)φ(y).

Then, we refer to φ as a homomorphism (sometimes “group” homomorphism) from G to H. More-
over, we denote the following set to be the set of all homomorphisms from G to H:

hom(G,H) = {φ : φ : G→ H, and φ(xy) = φ(x)φ(y)∀x, y ∈ G}.

It should be noted that the product between x and y in φ(xy) denotes the product in G, and
φ(x)φ(y) is actually a product between two elements in H.

Example. Let G be a group. Then we have that φ : (Z,+)→ (G, ·) where x 7→ ax for some x is a
homomorphism, since φ(x+ y) = ax+y = ax · ay = φ(x) · φ(y).

Example. The determinant of a matrix is a homomorphism from GLn(R) → R∗ = R \ {0}. This
is true since

det(AB) = det(A) det(B).

Definition 3.4.2 (Isomorphism). If a homomorphism φ is bijective, then it is known as an isomor-
phism.

Lemma 3.4.1 (Properties of Homomorphisms). Let φ : G→ H be a homomorphism. Then

1. φ(eG) = eH .

2. φ(am) = φ(a)m.

3. φ(a−1) = φ(a)−1.

Proof.

1. φ(eGx) = φ(eG)φ(x) = φ(x). Therefore, φ(eG) is the identity element in H, or eH .

2. We have that φ(am) = φ(aa · · · a) = φ(a)φ(a) · · ·φ(a), where the product is repeated m times.
Therefore, φ(a)φ(a) · · ·φ(a) = φ(a)m since this is just a repeated product in H.

3. φ(aa−1) = φ(eG) = eH = φ(a)φ(a−1). Therefore, φ(a−1) = φ(a)−1.

Lemma 3.4.2. Let φ ∈ hom(G,H), and let A,B ⊆ G. Then

1. φ(AB) = φ(A)φ(B).

2. φ(A−1) = φ(A)−1.

Proof.

1. φ(AB) = {φ(ab) : a ∈ A, b ∈ B} = {φ(a)φ(b) : a ∈ A, b ∈ B} = φ(A)φ(B).

2. φ(A−1) = {φ(a−1) : a ∈ A} = {phi(a)−1 : a ∈ A} = φ(A)−1.
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Now we will prove a lemma about the image of subgroups under homomorphisms.

Lemma 3.4.3 (Subgroups and Homomorphisms). Suppose φ ∈ hom(G,H), and that K ≤ G and
L ≤ H. Then

1. K ≤ G⇒ φ(K) ≤ H

2. L ≤ H ⇒ φ−1(H) ≤ G.

Proof.

1. We have that K 6= ∅ ⇒ φ(K) 6= ∅. Suppose we have x, y ∈ φ(K). Then that means that
x = φ(a) and y = φ(b) for some a, b ∈ K. Now we use the subgroup criterion to show that
xy−1 ∈ φ(K). But we have that ab−1 ∈ K so φ(ab−1) = φ(a)φ(b)−1 = xy−1 ∈ φ(K). So
φ(K) ≤ H.

2. Clearly, φ−1(H) is nonempty, since eH ∈ L so φ−1(eH) = eG, so eG ∈ φ−1(L). Now we
use the subgroup criterion. If a, b ∈ φ−1(L), this implies that φ(a), φ(b) ∈ L. therefore,
φ(a)φ(b)−1 ∈ L, so φ(ab−1) ∈ L. Therefore, ab−1 ∈ φ−1(L). Therefore, φ−1(L) ≤ G.

Due to the previous lemma, we have that φ(G) ≤ H. We sometimes call this the image of G under
φ. That is, we write that φ(G) = Im(φ). Moreover, we have that since {e} ≤ H, φ−1({e}) ≤ G.
This subgroup has a special name.

Definition 3.4.3 (Kernel). Let φ ∈ hom(G,H). Then we say the kernel of φ is simply the set of
all a ∈ G such that φ(a) = e.

kerφ := {g ∈ G : φ(g) = e}.

The kernel of G is a subgroup of G by the previous lemma.

Example. We know that det : GLn(R) → R∗. We have that Im(det) = R∗, and ker(det) = {A ∈
GLn(R) : det(A) = 1} = SLn(R). Therefore, SLn(R) ≤ GLn(R).

We have a natural homomorphism φ ∈ hom(Z, G) : k 7→ ak for some a ∈ G. Therefore,
=(φ) = {ak : k ∈ Z}, but this just equals the subgroup generated by a, 〈a〉. We also know that
kerφ ≤ G. However, we know that all subgroups of Z are cyclic. Therefore, kerφ is either {0}
or kerφ = nZ for some n ∈ N. In the first case, this implies that if ak = a`, then ak−` = 0
so k = `. Thus, we have φ(k) = φ(`) ⇒ k = `, or φ is an injection. In turn, this implies that
|{ak : k ∈ Z}| = |〈a〉| =∞.

In the second case, we have that kerφ = nZ. Since n ∈ kerφ, we have that an = 0. If we
consider the subgroup generated by a, we know that 〈a〉 = {ak : k ∈ Z}. From the division
algorithm, however, we have that k = n` + r, where 0 ≤ r < n, so 〈a〉 = {ar : 0 ≤ r < n}. This is
just the set of elements {e, a, a2, . . . , an−1}, whose elements are mutually distinct, since of ar = as,
then n|r − s. Since |r − s| < n, then |r − s| = 0 so r = s. Therefore, |〈a〉| = n.

This suggests an alternate framing of the order of a subgroup of the integers.

Definition 3.4.4. If a ∈ Z, then we can express the order of a o(a) of 〈a〉 as

o(a) =

{
n if kerφ = nZ
∞ if kerφ = {0}.
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3.5 Lagrange’s Theorem

3.5.1 The First Counting Argument

Definition 3.5.1. For a subgroup H ≤ G, and for any element a ∈ G, we call the set

aH = {ah : h ∈ H}

a left coset of H in G. Similarly, a right coset of H in G. is Ha = {ha : h ∈ H}.

Lemma 3.5.1. Let G be a group and H ≤ G. Then

L = {aH : a ∈ G}

that is, the set of left cosets of H is a partition of G. Moreover,

R = {Ha : a ∈ G}

is also a partition of G.

Proof. We will only prove this for left cosets. Suppose α ∈ L. Then α = aH for some a ∈ G.
Moreover, α 6= ∅ since H is a subgroup and therefore ae = a ∈ aH. In order to show that this is a
partition, we have to show that

G =
⋃
α∈L

α.

Clearly, this is the case, since ae = a ∈ aH for all a ∈ G, therefore G ⊆
⋃
α. Moreover, since G is

closed under the product, we have that every aH ⊆ G, so
⋃
α ⊆ G. This proves that the union is

equal to G.
Next, we have to show that for α, β ∈ L, if α ∩ β 6= ∅ ⇒ α = β. Suppose α = aH and β = bH

for a, b ∈ G. If x ∈ α ∩ β, then x = ah1 = bh2 for h1, h2 ∈ H. This implies that ah1H = bh2H.
However, h1H = H = h2H, since H is closed under multiplication. Therefore, aH = bH, so α = β.

Therefore L is a partition on G.

We usually denote G�H = L, which is read as G modulus H. Since every partition is an
equivalence relation, then let ∼ be the equivalence relation of L. Then

x ∼ y ⇐⇒ ∃α ∈ L : x, y ∈ α ⇐⇒ ∃a ∈ G : x, y ∈ aH.

Claim. x ∼ y ⇐⇒ x−1y ∈ H.

Proof. First, we have that x ∼ y ⇒ x−1y ∈ H:

x, y ∈ aH ⇒ x = ah1, y = ah2

⇒ y = xh−1
1 h2

⇒ x−1y = h−1
1 h2 ∈ H.

Next, we prove the reverse direction:

x−1y ∈ H ⇒ x−1yH = H

⇒ xH = yH

⇒ x ∈ xH, y ∈ xH = yH

⇒ x ∼ y.

This proves the claim.
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Now we have that G\ ∼= G \H, with the mapping

π : G→ G \H : x 7→ [x] = xH.

For right cosets, we have that x ∼ y if xy−1 ∈ H.

Claim. There is a bijection between left and right cosets.

Proof. We have that α 7→ α−1 is a bijection, since

α = aH ⇒ α−1 = H−1a−1 = Ha−1 ⇒ α−1 ∈ R.

If we have the bijection φ : α 7→ α−1, then we can make another bijection from the set of right
cosets to left cosets, namely ψ : β 7→ β−1. We have that

(ψ ◦ φ)(α) = ψ(α−1) = α = (φ ◦ ψ)(α)

Therefore, ψ, φ are bijections since they have well-defined inverses, and moreover, φ−1 = ψ. If two
sets have a bijection between them, then they have the same number ov elements.

Definition 3.5.2 (Index of H). Let L be the set of left cosets in G, and R be the set of right cosets.
Then we define the index of H in G to be

[G : H] := |L| = |R|.

Now, let us consider the first counting argument.

Proposition 3.5.2. We have that L is a partition. Thus

|G| =
∑
α∈L
|α|.

However, we know α = aH ⇒ |α| = |H|. This is because the map f from H to aH where x 7→ ax
is a bijection. Clearly, f is one-to-one because of the cancellation law in H; it is also onto since by
definition, members of aH are of the form ah for some h ∈ H. Therefore we have ah = f(h) for
some h ∈ H. Therefore,

|G| =
∑
α∈L
|α| =

∑
α∈L
|H| = [G : H]|H| = |L||H|.

This proposition gives rise to an important theorem in group theory.

Theorem 3.5.3 (Lagrange’s Theorem). If G is a finite group and H is a subgroup of G, then

[G : H]|H| = |G|.

In particular, |H| is a divisor of |G|.

Warning. Note that we cannot omit the hypothesis that G is finite from the theorem, since we can
have a group of infinite order such that |H| is finite; then |H| does not divide |G|. Moreover, the
converse of Lagrange’s theorem is false. That is, a group G does not have to have a subgroup of
order m if m divides |G|. Take S4; this has no subgroup of order 6.

Lagrange’s theorem also provides an interesting corollary pertaining to cyclic subgroups.

Corollary 3.5.4. If G is a finite group, then ∀a ∈ G, we have that

o(a)|o(G) = |G|.

Hence,
a|G| = e.

19



Abstract Algebra Andreas Tsantilas

3.5.2 The Second Counting Argument

Proposition 3.5.5. Let G be a finite group, and let H,K ≤ G. Then

HK ≤ G ⇐⇒ HK = KH

where
HK = {hk : h ∈ H, k ∈ K}.

Proof. The first direction is true, since we have that (HK)−1 = HK = K−1H−1 = KH.
Next, we have that HK = KH. Then HK is nonempty, since e ∈ HK. Moreover, if a, b ∈ HK,

then (HK)(HK)−1 = HKK−1H−1 = HKKH = HKH = HHk = HK, so ab−1 ∈ HK.

Theorem 3.5.6. Let G be a group, and H,K ≤ G such that H,K are finite. Then

|HK| = |H||K|
|H ∩K|

.

Proof. FILL IN PROOF.

Corollary 3.5.7. If G is a finite group with subgroups H, K, then if |H| >
√
|G| and |K| >

√
|G|,

then
∃x ∈ H ∩K : x 6= e.

3.6 Normal Subgroups

Recall from the previous section that if we have a subgroup G, then we can define the set G�H to
be the set of all left cosets of H in G, denoted L. A reasonable question to ask could be if there is

any possible group structure on G�H, since as of now it is just a set.
Since L is a partition of G, then this admits a natural quotient map from G to the equivalence

classes of this partition,

π : G→ G�H : a 7→ aH.

We hope that this map π ∈ hom(G,G�H), in order to [WHY???]. Therefore, our task will lie in
analyzing which requirements need to be put on H in order for this to occur.

Given an h ∈ H, and a, b ∈ G, and the map π is a homomorphism, we have that

π(a)π(b) = π(ah)π(b) = π(ahb) = π(ab),

since π(ah) = ahH = aH. Therefore,

abH = ahbH

bH = hbH

H = b−1hbH

⇒ b−1hb ∈ H.

In other words, b−1Hb ⊆ H. However, this implies that Hb ⊆ bH ⇒ H ⊂ bHb−1 ⇒ H ⊆
(b−1)−1Hb−1, so H ⊆ b−1Hb, so H = b−1Hb for all b ∈ G. In particular, we have that the left and
right cosets are equal, Hb = bH.

Definition 3.6.1. Let G be a group, and let N ≤ G such that

gN = Ng, ∀g ∈ G.

Then we say that N is a normal subgroup of G, and denote it by

N E G.
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Corollary 3.6.1.

1. G always has two normal subgroups, {e} and G.

2. If G is an abelian group, then every subgroup is normal.

There are multiple equivalent definitions of normality, the proofs of which will not be presented.

Theorem 3.6.2 (Equivalent Conditions for Normality). That a subgroup N of G is normal is
equivalent to the following. Let L be the set of all left cosets of G. For all g ∈ G and n ∈ N ,

1. gng−1 ∈ N

2. gNg−1 ⊂ N

3. gNg−1 = N

4. gN = Ng.

5. α, β ∈ L⇒ αβ ∈ L.

The last condition is extremely suggestive; it implies that the set of left cosets G�N is closed

under multiplication. Therefore, a natrual question to ask would be if G�N has a group structure.
The answer is indeed yes.

Theorem 3.6.3 (G/N is a Group). Let G be a group and let N be a normal subgroup of G. Then

the construction G�N , the group of left cosets of N , is a group under the set product. This is
referred to as forming a quotient structure.

Proof.

1. (Identity). We claim that N is the identity element in G�N . This is clear because α = aN ,
then αN = aNN = aN = α, and Nα = NaN = aNN = aN = Na = α.

2. (Inverses). If α = aN , then we can consider α−1 = a−1N , since aNa−1N = aa−1 = N , and
a−1NaN = a−1aN = N .

3. (Closure). One of the equivalent conditions for normality is closure, since

aNbN = a(Nb)N = a(bN)N = abNN = abN

which is also a left coset.

Following the previous discussion, we showed that

Lemma 3.6.4. If π : G→ G�N , and π ∈ hom(G,G�H) where N is a subgroup of G, then we must
have that N E G.

Definition 3.6.2. If the only normal subgroups of G are {e} and G, then we say that G is a simple
group.

One of the biggest struggles in the 20th century was to find and classify all finite simple groups.
Now we prove the following theorem:

Theorem 3.6.5 (Group of Prime Order). Let G be a group of prime order; that is, |G| = p. Then

1. G is cyclic.
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2. G is simple.

Proof.

1. Let a ∈ G \ e. Thus, o(a)|p = |G|. But since p is prime, this means o(a) = 1 or o(a) = p. But
we know that o(a) 6= 1, since a 6= e. Therefore, o(a) = p and |〈a〉| = p = |G|, so 〈a〉 = G.

2. Again, if there were a normal subgroup N E G, we would have that |N ||p = |G|. Therefore,
|N | = 1 or |N | = p; so the only normal subgroups are {e} or G, so G is simple.

A natural question might be is

Theorem 3.6.6. If π : G→ G�N , where N is a subgroup of G, then

π : a 7→ aN ∈ hom(G,G�N) ⇐⇒ N E G.

Proof. We already proved the first direction, by from lemma [NAME LEMMA]. Now suppose N

is normal. Then we have α, β ∈ G�N , such that α = aN and β = bN for some a, b ∈ G. Then
we have αβ = (ab)N Therefore, π(ab) = abN = aNb = aNNb = aNbN = π(a)π(b), so π is a
homomorphism.

Moreover, it is interesting to look at the kernel of π.

Lemma. Let N be a normal subgroup, and π : G→ G/N . Then

kerπ = N.

Proof. We have that

kerπ = {a ∈ G : π(a) = N}
= {a ∈ G : aN = N}
= {a ∈ G : a ∈ N}
= N.

Theorem 3.6.7 (Kernel is Normal). Let φ ∈ hom(G,H). Then kerφ E G.

Proof. According to one of the equivalent conditions, N is normal if aNa−1 ⊂ N for all a ∈ G.
Then we have g ∈ G and n ∈ kerφ. Then

φ(gng−1) = φ(g)φ(n)φ(g−1) = φ(g)eHφ(g)−1 = eH

so gng−1 ∈ kerφ. Therefore, kerφ is a normal subgroup of G.

3.7 Isomorphisms

In the previous sections, we discussed maps between groups that preserved the group structure
(homomorphisms). Now, we want to find a stronger way to relate groups.

Definition 3.7.1 (Isomorphic). Given two groups G and H, we say that G is isomorphic to H (and
vice versa) if we can find a group isomorphism between them. That is, there exists a bijective map
from G to H (H to G) such that the map is also a homomorphism. If this is true, we denote the
statement G is isomorphic to H by

G ∼= H.
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If this is true, then we can say that G and H are basically the same thing; every action you do
in G has a unique corresponding action in H. This is incredibly useful if we don’t know a lot about
a certain group, but do know a good deal about another one; if the two groups are isomorphic, then
we can more easily study the other one. This begs the question; how do we go about finding an
isomorphism? We first look at a typical problem in algebra.

3.7.1 A Typical Problem

Let G and H be groups, and let φ be a homomorphism from G to H. Moreover, let G1 be a group
such that there exists an onto homomorphism π from G to G1 (this is sometimes known as an
epimorphism). It might be convenient to express this in terms of a diagram:

G H

G1

π

φ

Now we want to ask if there is a homomorphism fromG1 toH, say ψ, such that ψ is a homomorphism.
Moreover, we want ψ ◦ π = φ. That

G H

G1

π

φ

∃ψ?

If we can find such a ψ ◦ π = φ, then we say that the diagram commutes. This essentially means
that we can get to H by way of φ or by ψ ◦π, which should be the same. Now let’s state a theorem.

Theorem 3.7.1. Let G,H,G1 be groups, and let φ ∈ hom(G,H), let π ∈ hom(G,G1). If kerπ ⊆
kerφ, then there exists a unique ψ ∈ hom(G1, H) such that ψ ◦ π = φ (the diagram commutes).

Remark. The condition kerπ ⊆ kerφ seems to be natural, since if we could find such a ψ, then
ψ ◦ π = φ. Thus, if a ∈ kerπ, then φ(a) = ψ(π(a)) = ψ(e) = e. Therefore, we put this in our
assumption for the theorem, but this theorem shows us that this condition is enough.

Proof. In our assumption, we have that kerπ ⊆ kerφ. First we show existence. Given a1 ∈ G1,
we know that because we assume π to be onto, that π(a) = a1. Thus, define ψ(a1) = φ(a). Now
we want to show that ψ is well-defined. That is, if a1 = π(a) = π(b), we need to show that
ψ(a1) = φ(a) = φ(b). Thus, suppose we have π(a) = π(b). This is equivalent to saying that
π(ab−1) = e. Therefore, ab−1 ∈ kerπ. But by assumption, this is also contained in kerφ, so
φ(ab−1) = e, which is equivalent to saying φ(a) = φ(b).

Now that we have shown that ψ is a well-defined map, we want to check that ψ ∈ hom(G1, H).
Given a1, b1 ∈ G1, we know that a1 = π(a) and b1 = π(b) for some a, b ∈ G. Thus, ψ(a1b1) =
φ(ab) = φ(a)φ(b). However, by the way we defined ψ, we know that φ(a)φ(b) = ψ(a1)ψ(b1).
Therefore, ψ ∈ hom(G1, H). Now we want to show that ψ ◦ π = φ. For a ∈ G, we have that
ψ(π(a)) = φ(a). Therefore ψ ◦ π = φ, so the diagram commutes.

Next, we show uniqueness. Suppose we have ψ and ψ̃, such that ψ◦π = φ = ψ̃◦π. We know that
there exists an a ∈ G such that π(a) = a1. Therefore, we have ψ(a1) = φ(a) = ψ(a1). Therefore,

since this is true for all a1 ∈ G1, ψ = ψ̃.

This theorem gives us one way to construct homomorphisms between groups to complete the
diagram. If we are lucky, this homomorphism may also be an isomorphism as well.
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3.7.2 First Isomorphism Theorem

We know from a few sections ago that kerφ is a normal subgroup. Therefore, we can make a quotient
group G/ kerφ. We don’t really understand what this is, but if we can find an isomprphism from
this group to something we do know, then we can say they are essentially the same. Indeed, this is
true, and we call it the first isomprphism theorem.

Theorem 3.7.2 (First Isomorphism Theorem). Let G,H be groups and let φ ∈ hom(G,H). Then

G�kerφ
∼= Imφ.

Proof. We have already been given a special way to construct homomorphisms between groups, and
now we want to construct an isomorphism. Let π be the natural map between G and G/ kerφ. That
is, π : g 7→ g kerφ for g ∈ G. Therefore, consider the diagram

G Imφ

G�kerφ

π

φ

∃ψ?
.

From this, it is clear that π is onto, since by definition a coset is of the form g kerφ for g ∈ G.
However, we also know that kerπ = kerφ, since for any quotient group of a normal subgroup, the
kernel is simply the normal subgroup. From the previous theorem, there is a unique homomorphism
ψ : G/ kerφ→ H, such that ψ ◦ π = φ. Now we have that

Imψ = ψ(G/ kerφ) = ψ(π(G)) = φ(G) = Imφ.

Therefore, we claim that ψ : G/ kerφ 7→ Imφ is an isomorphism. We have shown that ψ is onto, since
we showed that Imaψ = Imφ. We only need to show that ψ is one-to-one. Suppose ψ(α) = ψ(β).
Therefore, ψ(π(a)) = ψ(π(b)), so φ(a) = φ(b). This implies that φ(ab−1) = e, so ab−1 ∈ kerφ =
kerπ, so ab−1 ∈ kerπ. Therefore, π(ab−1) = e, so π(a) = π(b), and thus α = β. Thus, ψ is an
isomorphism, so

G�kerφ
∼= Imφ.

Theorem 3.7.3. Let φ ∈ hom(G,H). Then we have that

φ is one-to-one ⇐⇒ kerφ = {e}.

Proof. Let’s show the first direction. If φ is one-to-one, then we have that a ∈ kerφ implies φ(a) =
e = φ(e). Since φ is one-to-one this implies a = e. Therefore, kerφ ⊂ {e}. Clearly, e is also in kerφ.
So kerφ = {e}.

The other direction shows us that φ is one to one. Suppose φ(a) = φ(b). Then φ(ab−1) = e, so
ab ∈ kerφ. However, since kerφ = e, then ab−1 = e so a = b.

Corollary 3.7.4. Let G be a group, and let a ∈ G such that o(a) =∞. Then

〈a〉 ∼= Z.

Proof. Let φ : Z → G where k 7→ ak. We know that φ is a homomorphism and one-to-one, since if
φ(k) = e, we have ak = e. Since o(a) = ∞, this forces k = 0. Therefore, kerφ = {0}. Clearly, this
map is also onto 〈a〉. Therefore φ is an isomprphism.
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Corollary 3.7.5. Let G be a group, and let a ∈ G such that o(a) = n <∞. Then

〈a〉 ∼= Zn.

Proof. Consider φ : k 7→ ak. We have that kerφ = nZ, since a raised to any multiple of n is just e.
Moreover, Imφ = a. By the first isomorphism theorem, Z/ kerφ = Zn is isomorphic to Imφ, so

〈a〉 ∼= Zn.

Hence, we have shown that all cyclic groups are essentially the same as Z or Zn.

3.7.3 Second Isomorphism Theorem

Theorem 3.7.6. Let G be a group, and H ≤ G, and N E G. Then,

1. HN ≤ G

2. H ∩N E H

3. HN/N ∼= H/(H ∩N).

Proof.

1. We have that HN = NH, since N is normal. Therefore, HN ≤ G.

2. Let π : H → HN/N , where aN 7→ aN . We claim that Imπ = HN/N . We only have to show
that HN/N ⊆ Imπ, since the other way is obvious. Let α ∈ HN/N . Then any α ∈ HN/N
is just anN for a ∈ H and n ∈ N . Thus, anN = aN , which is just the image of π. Now we
claim that kerπ = H ∩N . We have

kerπ = {a ∈ H : aN = N}
= {a ∈ H : a ∈ N}
= H ∩N.

But since the kernel of any homomorphism is always normal, this tells us that H ∩N E H.

3. Moreover, we have that

H/ kerπ = H/H ∩N ∼= Imπ = HN/N.

Now we turn to some useful theorems

Theorem 3.7.7. Let G be a group. Let φ ∈ hom(G,G1) such that φ is onto. The following are
true:

1. The set {H ≤ G : kerφ ⊆ H} ∼= {H1 : H1 ≤ G1}.

2. For N E G, and kerφ ⊆ N , then φ(N) E G1.

3. If N E G, and kerφ ⊆ N , then G/N ∼= G1/φ(N).

Proof.

1. Clearly, the map ψ : H 7→ φ(H) works since if kerφ ⊆ H, φ(H) is a subgroup.
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2. For a1 ∈ G1, we have that a1 = φ(a) for some a ∈ G. Therefore, consider a1φ(n)a−1
1 . This is

just φ(a)φ(n)φ(a)−1 = φ(ana−1) = φ(n′) for some n′ ∈ N . Therefore a1φ(n)a−1
1 ∈ φ(N), so

φ(N) E G1.

3. Let π : G1 7→ G1/φ(N), since φ(N) is a normal subgroup of G1. Therefore, we have that
π ◦ φ ∈ hom(G,G1/φ(N)). This is clear since φ is onto and π is onto, since π is just the
canonical quotient map. We note that kerπ ◦ φ = {a ∈ G : π(φ(a)) = φ(N)}, or just
{a ∈ G : a ∈ N}. Therefore, from the first isomorphism theorem, G/ kerπ ◦φ is isomprphic to
its image, which is just G1/φ(N). Thus,

G�N ∼=
G1�φ(N).

It is important to think of homomorphisms and quotient groups together. Homomorphisms relate
groups together, and quotients somehow make groups smaller. Now with this in mind, quotients
help us a lot in proving new results.

3.8 Cauchy and Sylow Theorems for Finite Abelian Groups

Theorem 3.8.1 (Cauchy). Suppose G is a finite abelian group. Supose p| |G|, where p is prime.
Then there exists an a ∈ G such that o(a) = p.

Recall that for any x ∈ G, o(x)| |G|. However, the converse of Lagrange’s theorem is not true.
Consider Z2 × Z2. There is no element here that is of order 4.

Proof. We do this by inductio on G. The base case is that |G| = p. If this is so, then ∀a 6= e, we
have o(a) = p.

Now assume the theorem is true for all |G| < n. Now we show it is true for |G| = n. We have that
p|‖G|. If we have a b ∈ G such that p|o(b), say o(b) = pm, then o(bm) = p. Now pick b ∈ G \ {e}.

Case 1: If p|o(b), then there exists an a ∈ G such that o(a) = p.
Case 2: Of p does not divide o(b), then p does not divide |〈b〉|. Therefore, since G is abelian, and

all subgroups are normal, consider π : G→ G/〈b〉. We have that |G/〈b〉| = |G|/o(b) < n. Moreover,
the group G/〈b〉 is also abelian. Because of the fundamental theorem of arithmetic, we have that p
divides |G|, and p does not divide o(b); so p divides |G/〈b〉|. Therefore, by the induction hypothesis,
∃γ ∈ G/〈b〉 such that o(γ) = p. Therefore, since the quotient map π is onto, γ = π(x) for some
x ∈ G.

We would like to make one further observation, which is that if φ is a homomorphism, then
o(φ(x))|o(x). This is because if xk = e, then φ(x)k = e; therefore o(φ(x))|o(x). We also know that
o(γ)|o(x), since π is a homomorphism. Therefore, p|o(x). Now we know from our first observation
that o(x) = pm for some m, so xm = a. Therefore, there exists an a ∈ G such that o(a) = p.

Theorem 3.8.2. Let G be an Abelian group and p be prime. If pk| |G|, then there exists a subgroup
|H| = pk.

Proof. The base case is k = 1, which follows as a direct result of Cauchy’s theorem.
Now suppose this is true for k < n. We want to show it works for k = n. Now we have pn |G|.

First, p| |G|, so o(a) = p for some p. Now we have a quotient map π : G → G/〈a〉. Therefore, we
have that |G/〈a〉| = |G|/p. Therefore, pn−1| |G/〈a〉|. Sine G/〈a〉 is abelian, there exists a subgroup
|L| = pn−1 by the induction hypothesis. Let H = π−1(L). This is a subgroup of G since onto maps
preserve subgroups. Now we can consider π restricted to the subgroup H, or π|H : H → L, which is
also onto. We therefore have that kerπ|H = 〈a〉. This tells us that

H�〈a〉 ∼= L.
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Therefore, since |L| = pn−1, and o(a) = p, then |H| = pn. This concludes the proof.

Theorem 3.8.3. Suppose G is a group such that pm| |G|, but pm+1 does not divide |G|. Then
there exists a unique subgroup P ≤ G such that |P | = pm.

Proof. We have that |G| = pk, where 0 ≤ k < p. By the previous theorem, we know that there
exists a group P of order m. Now we prove uniqueness. Suppose there are two subgroups of G such
that |P | = pm = |P ′|. We know that the set PP ′ is also a subgroup of G, since PP ′ = P ′P . From
the first counting argument, we have that

|PP ′| = |P ||P ′|
|P ∩ P ′|

=
p2m

|P ∩ P ′|
.

From Lagrange’s theorem, we know that |P ∩ P ′|| |P |. Therefore, |P ∩ P ′| = pk, so |PP ′| = p2m−k.
However, since PP ′ is a subgroup, we have that |PP ′|| |G|. This forces k = m, since pm+1 does not
divide |G|. Since |P ∩ P ′| = pm, we know that P = P ′. Therefore, this is unique.

3.9 Automorphisms

Definition 3.9.1. If φ ∈ hom(G,G), and φ is an isomorphism, then we call φ an Automorphism of
G. The set of all automorphisms of G are denoted as

Aut(G).

Lemma 3.9.1. Let G be a group. Then Aut(G) is a group under function composition.

Proof. First, Aut(G) is nonempty since the identity map e(x) : x 7→ x is in Aut(G).
Next, suppose φ, ψ ∈ Aut(G). Then consider φψ−1. Since ψ is a bijection, so is ψ−1. However,

bijections are stable under composition. Therefore φψ−1 ∈ Aut(G).

Definition 3.9.2. Let cg(x) denote conjugation by an element in G. Therefore, we have that

cg(x) = gxg−1 ∈ Aut(G).

Proof. This is an automorphism and it is simple to prove.
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4 The Sylow Theorems

4.1 Applications of Sylow Theorems

The Sylow theorems give us some constraints on the subgroups of finite groups. Hopefully with this
extra information, we will be able to completely characterize certain finite groups. These theorems
are not a silver bullet; as we will see in later chapters, we will encounter more tools in our analysis
of finite groups.

This section should be studied closely in order to understand the various techniques we can
employ in order to classify (or partially classify) finite groups.

Example. Suppose |G| = 6. I claim that either G ∼= Z6 or G ∼= S3 (of course, Z6 6∼= S3 since the
former is abelian.) This is a problem known as a classification problem, where we find all the groups
of order 6 up to isomorphism.

Proof. Since |G| = 2× 3, we see that n2|3, and n2 ≡ 1 (mod 2). Thus, n2 = 1, 3. Now we consider
n3. We see that n3|2 and n3 ≡ 1 (mod 3). Thus n3 = 1. Now we have two cases:

1. (n2 = 1, n3 = 1). Now we have that P2 is a Sylow-2 subgroup, and the only one at that.
Since all Sylow-p subgroups are conjugate to one another, this means that P2 E G, since
aP2a

−1 = P2 for all a ∈ G. The same logic applies to P3, since it is the only Sylow-3 subgroup;
moreover, its index is 2 in G, and all subgroups of index 2 are normal (exercise). Now we can
find an isomorphism from G to Z6. We know that P2 must be generated by elements of order
2, since 2 is prime and all subgroups of prime order are cyclic. We have that

P2 = 〈a〉, o(a) = 2

P3 = 〈b〉, o(b) = 3.

Now we want to reason that o(ab) = 6. If we can prove that, then we will have a cyclic, abelian
group of order 6, which is patently isomorphic to Z6. We first show that ab = ba. This is
because if we look at the commutator [a, b] = aba−1b−1, we see that (aba−1)b−1 ∈ P3, since P3

is a normal subgroup and is closed under conjugation and multiplication. Similarly, we have
that a(ba−1b−1) ∈ P2. This means that a, b ∈ P2 ∩ P3. But P2 ∩ P3 = {e}, since the order of
elements in P2 divides 2, and the order of elements in P3 divides 3. Since they are relatively
prime, we have that the only possible member of their intersection is the identity. Therefore,
[a, b] = e so ab = ba. From here, we can argue that o(ab) = 6. We have that (ab)k = akbk = e
for some k, since a, b commute. This implies that ak = b−k ∈ P2 ∩ P3 = {e}. Thus ak = e,
and b−k = e⇒ bk = e. Therefore 2|k and 3|k. Thus o(ab) = 6 since 6 is the least number that
accomplishes this. Thus |〈ab〉| = 6 = |G|. Then

G = 〈ab〉 ∼= Z6.

In any abelian group, every Sylow-p subgroup must be unique, a fact covered in the Sylow
theorems for abelian groups (also obviois from the conjugacy condition).

2. (n2 = 3, n3 = 1). Now we want to show that G ∼= S3. We have to construct an explicit
isomorphism between the two. We have that P3 E G. Moreover, P2 6E G. If we look at the set
|G/P2| = 3, we have that G acts on G/P2 by a · α = aα for all a ∈ G, and α ∈ G/P2. Hence
we have the homomorphism

ρ : G→ ΣG/P2
∼= S3.
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We will show that this ρ is an isomorphism. Looking at the kernel of ρ, we have that

a ∈ ker ρ ⇐⇒ ∀α ∈ G/P2, aα = α

⇐⇒ ∀b ∈ G, abP2 = bP2

⇐⇒ ∀b ∈ G, b−1abP2 = P2

⇐⇒ ∀b ∈ G, b−1ab ∈ P2

⇐⇒ ∀b ∈ G, a ∈ bP2b
−1.

Thus we have that ker ρ ≤ P2 ⇒ ker ρ = {e} or ker ρ = P2. But the latter is impossible, since
the kernel is always normal but P2 6E G. Therefore we accept that ker ρ = {e}, and because
ΣG/P2

is finite, we actually have an isomprphism between the two. Thus

G ∼= ΣG/P2
∼= S3.

In the previous example, we classified all groups of order 6. In general, it is not true that we can
classify all groups. We can consider the example of groups of order 77.

Example. Initially, this number 77 might seem a little contrived. That’s because it is; we claim
that all groups of order 77 are isomorphic to Z77.

Proof. We have that |G| = 7 × 11. Thus n7|11, so n7 = 1, 11. However, n7 ≡ 1 (mod 7). This
means that n7 = 1. Similarly, we can see that n11 = 1. Thus P7, P11 E G. Now we hope to find an
element in G whose order is 77. Again, since all groups of prime order are cyclic,

P7 = 〈a〉, o(a) = 7

P11 = 〈b〉, o(b) = 11.

Again, we hope to show that o(ab) = 77. We can use the same commutator trick as in case 1 of the
previous example to show that ab = ba. Again, we can show that o(ab) = 77, and thus showing that
G = 〈ab〉 ∼= Z77. By proceeding exactly as in case 1 of the previous example,

(ab)k = e = akbk

⇒ ak = b−k ∈ P7 ∩ P11 = {e}
⇒ ak = e, b−k = e

⇒ 7|k, 11|k
⇒ 77|k.

Hence o(ab) = 77 since 77 is the least common multiple of 7 and 11.

Example. Now let’s consider groups of order 20449. We claim that all groups of this order are
abelian. Later on, we will classify all finite abelian groups using new tools. Again, the harder
parts of group theory are when we consider non-abelian groups. Note that simply determining that
groups of this order are abelian, we don’t fully classify it in terms of isomorphisms. That is for later
sections.

Proof. We have that |G| = 20449 = 112×132. Therefore, n11 = 1, 13, 132, but the only solution that
satisfies this is n11 = 1. Next we do the same for n13 and find out that n13 = 1. Now we have that
P11, P13 E G. Thus |P11| = 112 means that P11 is abelian, since all groups of order p2 are abelian.
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Similarly, P13 is abelian. Thus P11P13 ≤ G since they are both normal subgroups, and the product
of two normal subgroups is a subgroup. We claim P11P13 is abelian. Using the counting argument,

|P11P13| =
|P11| · |P13|
|P11 ∩ P13|

=
112 · 132

1

Since |P11 ∩ P13| divides both 112 and 132. This implies that G = P11P13. If we consider x ∈ P11

and y ∈ P13, we can use the same commutator trick to show that xy = yx. We’re not done; if we
have an a, b ∈ G, we can represent a = xy and b = x′y′. Thus

ab = xyx′y′ = xx′yy′ = x′xy′y = x′y′xy = ba.

Therefore G is abelian.

Now recall the definition of a simple group. If G is simple, then its only normal subgroups are
{e} and G itself. We call it “simple” since it cannot be further reduced by taking the quotient with
a non-trivial normal subgroup. It was a great effort over the 20th century, spilling into the 21st, to
classify all finite simple groups.

Example. We claim that if |G| = 12, thenG is not simple (i.e., it has a non-trivial normal subgroup).

Proof. We have that |G| = 22× 3. Then we apply the standard analysis to show that n2 = 1, 3, and
n3 = 1, 4. If Clearly, if n2 or n3 = 1, then we’re finished. Now we consider the case when n3 = 4; we
claim that n2 must necessarily be 1. Let us denote the Sylow-3 subgroups as H1, H2, H3, H4. Then
we have that (Hi \ {e}) ∩ (Hj \ {e}) = ∅ for i 6= j. Otherwise, we would have that if a ∈ Hj ∩Hj ,
we have that o(a) = 3 so 〈a〉 = Hi = Hj so i = j, a contradiction. Then we have that the set

{H1 \ {e}, H2 \ {e}, H3 \ {e}, H4 \ {e}}

is a partition of the set of order 3 elements in G. This is because if we have a ∈ G, and o(a) = 3,
then 〈a〉 = Hi for some i. Thus the number of order 3 elements is 2 × 4 = 8. Now let P2 be
a Sylow-2 subgroups. Then P2 ⊆ G \ {order 3 elements}. However, we know that |P2| = 4 and
|G \ {order 3 elements}| = 4. Thus

P2 = G \ {order 3 elements}.

This means that there is a unique Sylow-2 subgroup, since there is only one set of elements not of
order 3. Moreover, if there were 3 Sylow-2 subgroups, then there would be 3 × 3 = 9 elements of
order 2. There cannot simultaneously be 8 elements of order 3 and 9 of order 2, since the total order
of G is 12. Thus n2 = 1 and

P2 E G,

so groups of order 12 are not simple.

As a final example, we can look at how to leverage the properties of group actions in order to
classify groups.

Example. We claim that groups G of order 72 = 23 × 32 are not simple.

Proof. We have that n3 = 1, 4. We want to show that if n3 = 4, then n2 = 1. A way to construct a
normal subgroup is to consider the kernel of some homomorphism; and a way to naturally obtain a
homomorphism is by considering a group action. We have that the order of any Sylow-3 subgroup is 9.
Thus, let Syl3(G) = {Sylow3−subgroups}. |Syl3(G)| = 4. Then we can say that G acts on Syl3(G)
by a · P = aPa−1. This group action is transitive (i.e., it has only one orbit: Orb(P3) = Syl3(G).
Therefore, by the class equation,

4 = |Orb(P3)| = [G : Stab(P3)] = [G : NG(P3)]
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Where NG(P3) are the normalizers of P3 in G. Now we define H := NG(P3)⇒ [G : H] = 4. But the
normalizers themselves form a normal subgroup. Therefore let G act on G/H by left multiplication,
where a · α = aα for a ∈ G and α ∈ G/H. This gives rise to the homomorphism

ρ : G→ ΣG/H .

We have that the kernel ker ρ ⊆ H ⇒ ker ρ 6= G. Now we want to show that ker ρ 6= {e}. Then,
since the kernel is always normal, we will have found a nontrivial normal subgroup.

If ker ρ = {e}, them the group G/{e} ∼= Im(ρ), or G ∼= Im(ρ). But since Im(ρ) ≤ ΣG/H , we have
that |G| = | Im(ρ)|, and in turn Im(ρ)| |24. Thus |G|‖24 which is impossible. Therefore, there exists
a normal subgroup of G that is not G or {e}. Hence groups of order 72 are not simple.

The gist of this example is if we have large subgroups we will be able to find non-trivial normal
subgroups. If we look at action on the left cosets, then the kernel will be a normal subgroup; if the
kernel were {e} then the order of the group (which is large) would divide the order of the permutation
group (which is small), and hence produce a contradiction.
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5 Finite Abelian Groups

The problem of classification can be boiled down to trying to create a table of groups such that (a)
None of the groups in the table are isomorphic to one another, and (b) any given finite group is
isomorphic to one member in the table. In the area of mathematics called surface theory, we can
classify all surfaces by their genus, or the number of holes. In order to do this, we will need to
consider the tool of direct products.

5.1 Direct Products

DO LATER
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6 Ring Theory

Our aim in this chapter will be to do some basic ring theory. A ring is another algebraic structure.
A ring is a set with two operations, which are compatible with one another. The main reason we
are interested in ring theory is because we want to study polynomials.

6.1 Definitions

Definition 6.1.1 (Ring). A ring is a set R endowed with two operations, + and ·, such that

1. (R,+) is an abelian group. The unit element is denoted by 0

2. For every x, y, z ∈ R, (x · y) · z = x · (y · z).

3. For every x, y, z ∈ R,

x · (y + z) = x · y + x · z(y + z) · x = y · x+ z · x. (6.1.1)

Usually, we write the product x · y as xy. Moreover, the additive inverse of a is represented as
a−1 = −a.

Example. The most basic example of a ring is (Z,+, ·).

Definition 6.1.2 (Commutative Ring). We say a ring (R,+, ·) is commutative if ∀x, y ∈ R, we
have that

x · y = y · x.

We generally reserve the term “abelian” for groups.

Definition 6.1.3 (Ring with Unit). If (R,+, ·) is a ring, and there is an element 1 ∈ R such that

1 · r = r · 1 = r, ∀r ∈ R,

then we say that 1 is the unit element in R, and we say that R is a group with unit.

Lemma 6.1.1 (The unit is unique). Proof. Suppose 1 and 1′ are both units. Then we have

1 = 1 · 1′ = 1′ · 1 = 1′.

Example. We have that (Z,+, ·) is a commutative ring with unit. However, if you look at the even
integers, (2Z,+, ·), this is a commutative ring without unit. This is because if ther there is a unit
u, then we have that 2u = 2 so u = 1, but 1 /∈ 2Z.

Moreover, the rationals Q is a commutative ring.

Example. Recall that Zn = Z/nZ = {[a] : a ∈ Z}. This is a commutative ring with unit:

1. (Z,+) is an abelian group;

2. α(βγ) = (αβ)γ;

3. αβ = βα
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4. Let α = [a], β = [b], and γ = [c]. Then

α(β + γ) = [a][b+ c]

= [a(b+ c)]

= [ab+ ac]

= [ab] + [ac]

= [a][b] + [a][c]

= αβ + αγ.

This is the first nontrivial example of a commutative ring with unit.

Example. Let x be a variable. We denote the ring of polynomials with real coefficients by

R[x] = {a0 + a1x+ · · ·+ amx
m : ai ∈ R,m ∈ N}.

We can add and multiply polynomials and group like terms. We have that (R[x],+, ·) is a commu-
tative ring with unit (the polynomial where ai = δ0,i).

If we wanted to have polynomials with multiple variables, we would write

R[x, y] = {
∑
i,j

aijx
iyj : aij ∈ R}.

This is also a polynomial ring with unit.

Now, let’s look at an example that is not commutative.

Example. We consider the ring of matrices Mn(R) = Rn×n. Its unit is the identity matrix I, and
for n ≥ 2, the product in the matrix ring does not commute. We can provide counterexamples to
this effect.

We also have that Mn(C) and Mn(Z) are non-commutative rings.

Example. Let V be a vector space over C, and consider L(V, V ) which is the set of all linear
transformations from V to V . We have that for S, T ∈ L(V, V ), S+T ∈ L(V, V ) and S◦T ∈ L(V, V ).
It should be verified that (L(V, V ),+, ◦) is a ring.

Example. Let C([0, 1],R) be the set of continuous functions from [0, 1] to R. We define the prod-
uct to be (f · g)(t) = f(t)g(t) and the addition to be (f + g)(t) = f(t) + g(t). We have that
(C([0, 1],R)),+, ·) is a ring with unit. Likewise, all C1 functions from [0, 1] to R .

Lemma 6.1.2. For any ring, we have that

a · 0 = 0 · a = 0.

Proof. We have that a · 0 = a(0 + 0) = a · 0 + a · 0. Therefore a · 0 = 0; we can prove the other
equality similarly.

Definition 6.1.4 (Zero Divisors). Let R be a ring. We say that a, b are zero divisors if we have
a, b 6= 0 and

a · b = 0

for some a, b ∈ R.

Definition 6.1.5 (Integral Domain). If (R,+, ·) is a commutative ring that has no zero divisors,
then we call R an integral domain. Equivalently, we can say that an integral domain is a ring such
that

ab = 0⇒ a = 0 or b = 0.
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Example. We can show that (C([0, 1],R), ·) is not an integral domain. We can define two continuous
functions that are 0 at the points where the other is nonzero; thus fg = 0 but f, g 6= 0.

Integral domains are expecially useful since the left and right cancellation laws hold in the integral
domain.

Lemma 6.1.3. If R is an integral domain, then we have

ab = ac, a 6= 0⇒ b = c.

Proof. We can rearrange this to be a(b − c) = 0. By assumption, a 6= 0. Therefore b − c = 0, so
b = c. Note that this doesn’t work in a non-integral domain, since we have nonzero b that can satisfy
ab = a0 = 0.

Definition 6.1.6 (Degree of a polynomial). The degree of a polynomial is the highest power of x
that appears in a polynomial f(x) with nonzero coefficeint. We denote this by deg(f). Sometimes
we define the degree of the 0 polynomial to be deg(0) = −∞.

Example. The polynomial ring R[x] is an integral domain. If we have two polynomials f, g ∈ R[x],
and f, g 6= 0, then we need to show f · g 6= 0.

Proof. Let f(x) = a0 + a1x+ · · ·+ amx
m, am 6= 0. We define g(x) = b0 + b1x+ · · ·+ bnx

n, bn 6= 0.
Now we gather the highest-order terms, which will be ambnx

m+n. This is nonzero, therefore the
product f · g 6= 0. Therefore R[x] is an integral domain.

Corollary 6.1.4. For any two nonzero polynomias deg(f · g) = deg(f) + deg(g). If f or g = 0, then
by the convention that deg(0) = −∞, this still holds.

Definition 6.1.7. Let R be aring with unit 1 6= 0. Then we say a ∈ R is invertible if there exists a
b ∈ R such that

ab = ba = 1.

Such an element b is unique, and we denote it as a−1.

Proof. We have uniqueness since b = bab′ = b′.

Definition 6.1.8 (Invertible Elements of a Ring). We denote the set of all invertible elements in a
ring (R,+, ·) as

R× = {a ∈ R : ∃a−1}.

Lemma 6.1.5. If R is a ring with unit 1 6= 0. The group of units R× is a group. With the product
· .

Proof.

1. R× 6= 0 since 1 ∈ R×.

2. a, b ∈ R× ⇒ ab ∈ R× and (ab)−1 = b−1a−1.

3. If a ∈ R×, then ∃b ∈ R such that ab = ba = 1. Then this implies that b ∈ R×.

4. The product is associative since it is associative in R.

Example. We have that Z× = {±1}, Q× = Q \ {0}, and R× = R \ {0}.
For matrices, Mn(R)× = {A ∈Mn(R) : det(A) 6= 0}.
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Definition 6.1.9 (Division Ring). If R is a ring with unit, such that every nonzero element is
invertible (i.e., R× = R \ {0}), then we say that R is a division ring.

Definition 6.1.10 (Field). A commutative division ring is known as a field.

Example. As discussed above, some examples of fields are

1. (Q,+, ·)

2. (R,+, ·)

3. (C,+, ·).

Example. Consider Q[
√

2] = {a + b
√

2 : a, b ∈ Q}. This is a field. Let α = a1 + a2

√
2, and let

β = b1 + b2
√

2.

1. Suppose α, β ∈ Q[
√

2]. Then α− β(a1 − b1) + (a2 − b2)
√

2 ∈ Q[
√

2].

2. The product αβ = a1b1 + a1b2
√

2 + a2b1
√

2 + 2a2b2. This clearly belongs to Q[
√

2]. Needless
to say, the product is commutative and associative, since real numbers commute and associate
under the product.

3. Now we show that if α ∈ Q[
√

2] \ {0}. Then we write the inverse of the element α = a+ b
√

2
as

1

α
=

1

a+ b
√

2
=
a− b

√
2

a2 − 2b2
∈ Q[
√

2]

This proves that Q[
√

2] is a field.

Example. We denote the set of quaternions as H. This is a division ring, but not commutative.
We have that

H = {a+ bi+ cj + dk : a, b, c, d ∈ R}.

We set up the following rules for the product:

1. i2 = j2 = k2 = −1

2. ij = k = −ji

3. jk = i = −kj,

4. ki = j = −ik.

This is a very important example of a division ring that does not commute. For α = a+bi+cj+dk ∈
H, then we have

α−1 =
a− bi− cj − dk
a2 + b2 + c2 + d2

.

Lemma. Every field is an integral domain.

Proof. Assume ab = 0. If a = 0, we are done. If a 6= 0, then a−1 exists and a−1ab = b = a−10 =
0.

Theorem 6.1.6 (Wederburn’s Theorem). Any finite integral domain is a field.
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Proof. Let R be a finite integral domain. We need to show that there exists a unit element 1 6= 0,
and that every nonzero element is invertible.

Suppose we pick a ∈ R \{0}. Let fa : R→ R : x 7→ ax. We can show that fa is one-to-one, since

fa(x) = fa(y)⇒ ax = ay ⇒ x = y

since the cancellation law holds in integral domains. Since R is finite, we know that since fa is
one-to-one that fa is also onto. This implies that ∃1 ∈ R such that a = fa(1), so for all x ∈ R,
ax = ax · 1⇒ x = x · 1. This implies 1 6= 0 and is a unit element in R. If a ∈ R \ {0}, then there is
a b such that fa(b) = 1→ ab = 1, so a is invertible.

Hence, R is a field

Theorem 6.1.7. If n ≥ 2, then

Zn is an integral domain ⇐⇒ n is prime.

Proof. (⇒). Suppose n = k`, k, ` ∈ N. This implies that [n] = [k][`] = 0. This implies that [k] = [0]
or [`] = [0]. Say [k] = [0]; this means that n|k, so n ≤ k. But we also know that n ≥ k, since k|n.
Therefore, n = k so ` = 1. Therefore, n is prime.

(⇐). Suppose n is prime. Let α, β ∈ Zn and α ·β = [0]. Then let α = [a] and β = [b]. If we have
[ab] = [0], then n|ab. But n is prime, so that means that n|a or n|b. Then α = [0] or β = [0].

Corollary 6.1.8. If n ≥ 2, then

Zn is a field ⇐⇒ n is prime.

Definition 6.1.11 (Characteristic of a Ring). Let F be a field, with an identity element u ∈ F .
Define ku = u+ · · ·+ u where addition is repeated k ∈ N times. Consider the set

H = {k ∈ N : ku = 0} ≤ (Z,+).

If H = {0}, then we say that char(F ) = 0. If H 6= {0}, then we have that char(F ) = min(H).
In other words, the characteristic of a ring is the order of the unit element with respect to +.

Theorem 6.1.9. Every field with nonzero characteristic has prime characteristic.

Proof. Let m = char(F ) 6= 0. Suppose m = k`, and k, ` ∈ N. Then we have that 0 = mu = ku · `u.
This means that ku = 0 or `u = 0; thus m|k or m|`, since m is the smallest number with this
property. This implies that k = m or ` = m, since we have that k|m and `|m. Therefore, ` = 1 or
k = 1, so m is prime.

Example. Define the set

R(x) :=
{p(x)

q(x)
: p, q ∈ R[x], q 6= 0

}
6.2 Ring Homomorphisms

When we studied groups, we did not study them as isolated objects, but also their connections.
Similarly, we will study the mappings between rings. In order to define a ring homomorphism, we
want to preserve both of the products.

Definition 6.2.1. Let R,S be rings, and let φ : R→ S. Moreover, let r1, r2 ∈ R. If φ satisfies

1. φ(r1 + r2) = φ(r1) + φ(r2)

2. φ(r1r1) = φ(r1)φ(r2),
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then we say that φ is a ring homomorphism from R to S.

Example. Consider c : C→ C given by
c(z) = z.

This is a ring homomorphism, since c(z + w) = z + w = z + w = c(z) + c(w). Moreover, for the
product, c(zw) = z · w = z · w = c(z)c(w).

Example. Let π : Z→ Zn given by
k 7→ [k].

Example. Let us identify all ring homomorphisms from Z to Z. If φ is a ring homomorphism, then
we use the fact that φ is a group homomorphism with respect to addition:

φ(k) = φ(k · 1) = φ(1 + · · ·+ 1) = kφ(1).

Next, we have that φ(1) = φ(1 · 1) = φ(1)φ(1). Thus φ(1) = 1 or 0. This means that φ(k) = k∀k,
or φ(k) = 0∀k.

Therefore, φ = id or φ = 0.

Example. We established thatQ[
√

2] is a field. Then we define the ring homomorphism φ : Q[
√

2]→
Q[
√

2] given by

φ(α) = a− b
√

2.

We have that α+ β = (a1 + b1) + (a2 + b2)
√

2, and so

φ(α+ β) = (a1 + b1)− (a2 − b2)
√

2 = a1 − a2

√
2 + b1 − b2

√
2 = φ(α) + φ(β).

Next, it can be shown that this is a homomorphism with respect to the product. This is akin to
complex conjugation.

Lemma 6.2.1. If φ is a homomporphism from R to S, then

1. φ(0) = 0.

2. φ(−a) = −φ(a).

3. If R is an integral domain, then φ(1) = 1.

Proof.

1. φ(0) = φ(0 + 0) = φ(0) + φ(0)⇒ φ(0) = 0.

2. φ(a− a) = φ(a) + φ(−a) = 0⇒ φ(−a) = −φ(a).

3. In this case, we have the left and right cancellation laws, so

φ(1) = φ(1 · 1) = φ(1)φ(1)⇒ φ(1) = 1.

When defining the kernel for a ring homomorphism, we have two operations to choose from.
Built into the idea of a ring is that (R,+) is an abelian group. The ring multiplication was less
restricted, so we give more emphasis to the addition operation.

Definition 6.2.2 (Kernel of Ring Homomorphism). Let φ be a ring homomorphism from R to S.
Then we define the kernel of φ to be

kerφ := {r ∈ R : φ(r) = 0}

where 0 is the additive identity.
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Definition 6.2.3. If R and S are two rings, and φ : R→ S is a bijective ring homomorphism, then
we say that φ is a (ring) isomorphism from R to S. If such a φ exists, then we say that R and S are
isomorphic.

Example. Let V be a vector space over R, and let dim(V ) = n. Select a basis u1, . . . , un. Consider
the ring L(V, V ).

On the other hand, consider the ring of n× n matricies. Then we claim that

L(V, V ) ∼= Rn×n.

For all T ∈ L(V, V ), let A be the matrix of T with respect to u1, . . . , un. Then let

A =
[
T (u1) T (u2) . . . T (un).

]
Then the homomorphism φ : T 7→ A is a ring isomorphism.

6.3 Ideals and Quotient Rings

When dealing with groups, we realized that there were important objects called subgroups. In
particular, we discussed the importance of normal subgroups. These allowed us to make a quotient
group. Similarly, we can define a subring and a so-called ideal—a structure far more important than
a subring.

Definition 6.3.1 (Subring). Let (R,+, ·) be a ring. If S ⊆ R is a subset which is closed under +,·,
and (S,+, c)̇ is a ring, then we say that S is a subring of R.

Remark. In order to check that S ⊆ R is a subring, we need to show that

1. S is a subgroup of (R,+).

2. S is closed under ·.

Example. Recall Z[
√

2] = {k + `
√

2 : k, ` ∈ Z}. We now demonstrate that it is a subring of R.

1. We know that Z[
√

2] 6= ∅ since 0 ∈ Z[
√

2]. Moreover, if α = k1 + `1
√

2 and β = k2 + `2
√

2,
them α− β = (k1 − k2) + (`1 − `2)

√
2 ∈ Z[

√
2]. Therefore Z[

√
2] is a subgroup of (R,+).

2. α · β = k1k2 + k1`2
√

2 + k2`1
√

2 + 2`1`2 is still in Z[
√

2].

Therefore, Z[
√

2].

Lemma 6.3.1. Let φ : R→ S be a ring homomorphism. Suppose R′ ⊂ R is a subring of R. Then
φ(R′) ⊂ S is a subring of S.

Proof. Since 0 ∈ φ(R′), we have that φ(R′) is nonempty. Next, if α, β ∈ φ(R′), then α = φ(x) and
β = φ(y) where x, y ∈ R′. Then α−β = φ(x)−φ(y) = φ(x−y) ∈ φ(R′). Lastly, α·β = φ(xy) ∈ φ(R′).
Therefore the image φ(R′) is a subring of S.

Lemma 6.3.2 (Kernel is a Subring). Let φ : R → S be a ring homomorphism. Then kerφ is a
subring of R.

Proof. We have that 0 ∈ kerφ. Then suppose a, b ∈ kerφ. This means that φ(a−b) = φ(a)−φ(b) = 0.
Therefore a− b ∈ kerφ. Lastly, we have that φ(ab) = φ(a)φ(b) = 0, so ab ∈ kerφ.

Therefore, the kernel is a subring.

However, we were able to do something with the kernel, which is to “mod out” some of the
structure of a group. Indeed, the kernel satisfies something far more than simply being a subring; it
is the ring analogue of a normal subgroup, known as an ideal.
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Definition 6.3.2 (Ideal). Let R be a ring. I ⊂ R is an ideal of R if:

1. I is a subgroup of (R,+).

2. For all r ∈ R and a ∈ I, then ra, ar ∈ I. Equivalently stated, rI ⊆ I and Ir ⊆ I.

Clearly, I is also a subring of R. If only multiplcation from the left implies that ra ∈ I, then we
call I a left ideal. Similarly, we call I a right ideal if only Ir ⊆ I is guaranteed.

Lemma 6.3.3. The kernel of a ring homomorphism φ : R→ S is an ideal.

Proof. We showed that kerφ was a subgroup of (R,+). In order to show the second property, note
that if a ∈ kerφ and r ∈ R, then

φ(ra) = φ(r)φ(a) = φ(r) · 0 = 0

and similarly for the right.

Example. Let’s consider all the ideals of (Z,+, ·). This means that I is a subgroup of (Z,+). But
in section [section], we showed that all subgroups are of the form mZ where m ∈ N. But any element
ma ∈ mZ means that for all b ∈ Z we have bma = mba ∈ mZ, and mab ∈ mZ.

Example. For n ≥ 2, consider Mn(R). Consider the set

L = {[u, 0, . . . , 0] : u ∈ Rn}.

For any A ∈Mn(R), we have A[u, 0, . . . , 0] = [Au, 0, . . . , 0] ∈ L. L is a left ideal, but not necessarily
an ideal. In fact, this leads to a theorem:

Theorem 6.3.4. For n ≥ 2, the ring Mn(R) = Rn×n has no non-trivial ideals; that is, the only
ideals are I = {0} or I = Rn×n.

Proof. We only consider the case where n = 2. The other cases are similar. For A ∈ R2×2, and A is
invertible, then A ∈ I where I is an ideal. We also know that ∃A−1 ∈ R2×2, such that

AA−1 =

[
1 0
0 1

]
∈ I.

Thus, ∀B ∈ R2×2, id ·B ∈ I, so R2×2 ⊆ I. Since I ⊆ R2×2, we have that I = R2×2.
If A is not invertible, A ∈ I, A 6= 0, we can perform a series of elementary row and column

operations on A to obtain [
1 0
0 0

]
That is, ∃P,Q ∈ R2×2 such that

PAQ =

[
1 0
0 0

]
∈ I.

Then [
0 1
1 0

] [
1 0
0 0

] [
0 1
1 0

]
=

[
0 0
0 1

]
∈ I

And thus [
1 0
0 0

]
+

[
0 0
0 1

]
= id ∈ I

Thus, by the same argument above, I = R2×2. Therefore, if I is an ideal of R2×2, then I = {0} or
I = R2×2.
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Lemma 6.3.5. If R is a ring, ∀α ∈ Λ, Iα is an ideal of R implies that

E =
⋂
α∈Λ

Iα

is an ideal of R.

Proof.

1. ∀α ∈ Λ, 0 ∈ I. This implies that 0 ∈ E.

2. Since ∀α ∈ Λ, Iα is a subgroup of (R,+), so is E by the previous chapter.

3. Suppose r ∈ R and a ∈ E. Then ∀α ∈ Λ, we have that ra, ar ∈ Iα so ra, ar ∈ E so E is an
ideal.

Just like we had the concepts of generating subsets, we can effectively generate

Definition 6.3.3 (Subring Generated by a Set). Let X ⊂ R. We denote the ideal generated by X
to be

(X) :=
⋂

I:X⊂I
I.

This is the smallest ideal containing X.

Lemma 6.3.6. If R is a ring with unit 1, and X ⊂ R, and X is nonempty, then

(X) = {r1x1s1 + · · ·+ rmxmsm : ri, si ∈ R, xi ∈ X}

Proof. Let I be the right hand side. Then I is an ideal of R, which is easy to verify. Now suppose
α ∈ I. Then α = r1x1s1 + · · ·+ rmxmsm. Each rixisi ∈ (X), so α ∈ (X). Hence I = (X).

Remark. If R is a commutative ring with unit 1, and X ⊂ R, then

(X) = {r1x1 + · · ·+ rmxm : ri ∈ R, xi ∈ X}.

Definition 6.3.4 (Quotient Ring). Let R be a ring and I be an ideal. We define the quotient ring
to be

R�I := {a+ I : a ∈ R}.

This is an abelian group with respect to +. Moreover, we can define the product of two elements
α, β ∈ R/I. Let α = a+ I and let β = b+ I. Then

α · β := (ab+ I).

It should be verified that (R/I,+, ·) is a ring. This admits a quotient map π : a 7→ a + I, which is
also a homomorphism. We sometimes denote a+ I to be [a].

Like we discussed earlier, when we had this “quotient” operation for groups and normal sub-
groups, this gave rise to the first isomorphism theorem. We can state a similar theorem for rings.
The problem is making the diagram commute:

R S

T

π

φ

∃!ψ
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Where kerπ ⊆ kerφ and where ψ ◦ π = φ.

Theorem 6.3.7. For rings R,S, T , if we have a homomorphism φ : R→ S, and an onto homomor-
phism π : R→ T , and kerπ ⊆ kerφ, then there exists a unique homomorphism ψ : T → S such that
ψ ◦ π = φ.

Theorem 6.3.8 (First Isomorphism Theorem for Rings). If φ : R → S is a ring homomorphism,
then

1. kerφ is an ideal, and

2. R�kerφ
∼= Im(φ).

Example. Consider the homomorphism φ : C([0, 1],R)→ R given by

φ : f 7→ f(1/2).

The kernel of this is
kerφ = {f ∈ C([0, 1],R) : f(1/2) = 0}

And Imφ = R. Therefore,
C([01, ],R)�kerφ

∼= R.

Example. Suppose R,S are rings, and π : R→ S is an onto ring homomorphism. Then kerπ ⊂ R
is an ideal. Now we look at all the ideals in S. We claim that there is a one-to-one correspondence.

{ideals in S} ∼ {I : I ⊂ R is an ideal such that kerπ ⊂ I}.

This is given by

J → π−1(J)

π(I)← I

This gives a bijection. The reason we showed this is made clear in the next example:

Example. Let R be a ring, and I0 ⊂ R is an ideal. We have the natural quotient map π : R→ R/I0.
Thus we claim

{I : I ⊂ R is an ideal, I0 ⊂ I} ∼= {J : J is an ideal of R/I0}
This is the map given by

I → π(I) = I/I0

π−1(J)← J

Next, we want to understand when the quotient R/I0 is a field? A field is much simpler than an
arbitrary field. First, we make the following observation.

Theorem 6.3.9. Suppose R is a commutative ring with unit 1 6= 0. Then

R is a field ⇐⇒ any ideal of R is either 0 or R.

Proof. Suppose I ⊂ R is an ideal. If I = 0, we’re done. If there is a nonzero element in I that is
not 0, then this implies ∃a ∈ I \ {0}. Since we are in a field, then a−1 is also in the field. For any
r ∈ R, we have that (ra−1)a ∈ I since I is an ideal. This implies that for any r ∈ I, this implies
that R ⊂ I. But we also have I ⊂ R. Therefore R = I.

Now suppose every ideal is either the whole thing or the trivial one. Now suppose a ∈ R \ {0}.
We need to show that a is invertible. If we look at (a) = {ra : r ∈ R}, we know that this must be
equal to all of R. This implies that 1 = ra for some r ∈ R. Therefore a is invertible.
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Now suppose R is a commutative ring with unit 1, and let M ⊂ R be a propper ideal, or M 6= R
(1 /∈M). Then we have the map

π : R→ R/M

where the unit correspondsto π(1) = [1] 6= [0]. We showed before that

{I : I ⊂ R is an ideal, M ⊂ I} ∼= {ideals of R/M}

We have the correspondences

M ↔ 0

R↔ R/M.

Definition 6.3.5. Let R be a ring with unit 1 6= 0, and let M ⊂ R be a proper ideal. If

M ⊂ I ⇒ I = R or I = M

then we say that M is a maximal ideal of R.

We have the following important theorem:

Theorem 6.3.10.
R�M is a field ⇐⇒ (M is a maximal ideal.

Proof. This is our way of saying that the only ideals of R/M correspond to the ideals I where
M ⊂ I. Clearly, if M ⊂ I only for I = R,M , then π(M) = 0 and π(R) = R/M . Since these are the
only two ideals in R/M , we know that R/M must be a field.

Example. We went over the example where we had the evaluation map φ : f 7→ f(1/2). We
considered the set

kerφ = {f ∈ C([0, 1],R) : f(1/2) = 0}.

We also showed that
C([0, 1],R)�kerφ

∼= R.

but R is a field. Therefore M must be a maximal ideal. As a matter of fact, we can do the same
∀0 ≤ t ≤ 1.

Theorem 6.3.11. If M is a maximal ideal of C([0, 1],R), then for some 0 ≤ t ≤ 1,

M = {f ∈ C([0, 1],R) : f(t) = 0}.

This is a very useful fact in the study of functional analysis.

6.4 Constructing Quotient Fields

First we discussed quotient rings, and then the first isomorphism theorem, and now we discussed
when the quotient field is a ring.

Now consider the integral domain Z. The most remarkable fact of Z is the fundamental theorem
of arithmetic, or that every integer has a prime number decomposition. We want to see if any
other integral domains have such a property, a “prime number decomposition” of sorts. This is a
useful generalization since we want to eventually study polynomials. In particular, we will show that
R[x1, . . . , xm] and C[x1, . . . , xm] are unique factorization domains. We will show this for so-called
Euclidean domains (e.g., R[x]).

The first step is to do the following. Suppose D is an integral domain. We’ll discuss a so-called
“embedding” theorem, which shows that we can find a field F such that D is a subring of F . For
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instance, Z ⊂ Q. Another example is R[x] ⊂ R(x), where R(x) is the rational functions. The
remarkable fact is that this can be done for any integral domain D!

Let D be our integral domain, where D is a commutative ring D 6= 0 and ab = 0⇒ a or b = 0.
But notice how in the example Z → Q, we have that 5/3 = 10/6 = 25/15. Therefore it makes

sense to define an equivalence class in the quotient ring.
Define the relation ∼ on D × (D \ {0}) given by

(a1, a2) ∼ (b1, b2) ⇐⇒ a1b2 = a2b1.

Claim. We claim that ∼ is an equivalence relation. The new field F will be D × (D \ {0})/ ∼.
This is a very typical way of constructing new mathematical objects from old ones; we define an
equivalence relation and take a quotient.

Proof.

1. (Reflexivity.) We have that for (a1, a1), a1a2 = a2a1, but this is true since D is commutative.

2. (symmetry.) This is also true since we can say a2b1 = a1b2.

3. (Transitivity.) Suppose (a1, b1) ∼ (a2, b2) ∼ (a3, b3). Then

a1b2 = a2b2

a2b3 = a3b2.

If we look at

a1b2b3 = a2b1b3

= a2b3b1

= a3b2b1.

That is, (a1b3)b2 = (a3b1)b2. But b2 6= 0. Therefore this gives us a1b3 = a3b1 as desired.

Thus, let F = D× (D \ {0})/ ∼. The equivalence class of (a, b) = [a, b]. Next, we want to define
operations on F so that F is a field.

1. For α1, α2 ∈ F , then we define

α1 + α2 = [a1, b1] + [a2, b2] = [a1b2 + a2b1, b1b2].

2. For α1, α2 ∈ F , then we define

α1 · α2 = [a1, b1] · [a2, b2] = [a1a2, b1b2].

Claim. We need to show that +, · are well defined operations.

Proof. Let α1 = [a1, b1] = [a′1, b
′
1]. Let α2 = [a2, b2] = [a′2, b

′
2]. We have that a1b

′
1 = a′1b1, and

a2b
′
2 = a′2b2. Then we need to have the equality

(a1b2 + a2b1)b1b
′
2 = (a′1b

′
2 + a′2b

′
1)b1b2

which we can show from the equivalence relation formulas. Similar process for showing that multi-
plication is well defined.
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Notice how the equivalence relation is very reminiscent of how fractions work; indeed, [5, 3] =
[10, 6] in this case. In general, for any integral domain D, we have the following simplifications:

1. [a, b] = [ac, bc], c 6= 0.

2. [a1, b] + [a2, b] = [a1 + a2, b].

Where the first implies the second. This is very similar to when two fractions have a common
denominator. Now we have to show the field properties.

Theorem 6.4.1. The set F = D × (D \ {0})/ ∼ is a field with the operations

[a1, b1] + [a2, b2] = [a1b2 + a2b1, b1b2]

[a1, b1] · [a2, b2] = [a1a2, b1b2].

Proof.

1. First, we show that F is a commutative ring with unit. We have that (F,+) is an abelian
group. The additive identity element is just 0 = [0, b],∀b ∈ D \ {0}. Note that for any
b1, b2 ∈ D \ {0}, that [0, b1] = [0, b2]. Then if we have α = [a, b], then we can represent 0
as [0, b], so we can simply add the first slot to get α + 0 = [a, b] + [0, b] = [a, b] = α. The
fact that + is commutative is clear since D is commutative. Moreover, every element has an
inverse with respect to +; −α = [−a, b]. Moreover, + is associative which can be proven by
expanding. Thus, (F,+) is an abelian group.

2. We now show that product · is associative and commutative. This is simple, since

(α1α2)α3 = [(a1a2)a3, (b1b2)b3] = [a1(a2a3), b1(b2b3)] = α1(α2α3).

and
α1α2 = [a1a2, b1b2] = [a2a1, b2b1] = α2α1.

3. In order to prove the distributive laws, we can do the trick where we make the two elements
have the same common denominator.

4. The unit element is 1 = [b, b] for all b 6= 0. This is well defined since [b1, b1] = [b2, b2]. Moreover,
α · 1 = [a, b] · [b, b] = [ab, bb] = [a, b] = α. Clearly, this unit element is also not equal to 0.
Indeed, (F,+, ·) is a ring with unit.

5. We now show that every nonzero element is invertible. Given α = [a, b], we have that a 6= 0 and
b 6= 0, since α 6= 0. Thus, we claim that α−1 = [b, a] does the job, since αα−1 = [ab, ab] = 1.
Therefore, (F,+, ·) is a field.

Now we show that there can be an imbedding (a one-to-one ring homomorphism) between D
and F .

Theorem 6.4.2 (Embedding Theorem). For an integral domain D, we can find an injective ring
homomorphism

φ : D → F

i.e., we can view D as a subring of F .

45



Abstract Algebra Andreas Tsantilas

Proof. For a ∈ D, then ∀b2, b2 ∈ D \ {0},

[ab1, b1] = [ab2, b2].

The reason we don’t let b1, b2 = 1 is because D may not have a unit element. Then we define

φ(a) = [ab, b], ∀b ∈ D \ {0}.

We can show that φ is a ring homomorphism:

1. φ(a1 + a2) = [(a1 + a2)b, b] = [a1b+ a2b, b] = [a1, b] + [a2, b] = φ(a1) + φ(a2).

2. φ(a1)φ(a2) = [a1b, b][a2b, b] = [a1a2b
2, b2] = [a1a2b, b] = φ(a1a2).

Now demonstrate φ is one-to-one. Suppose a ∈ kerφ. Then φ(a) = 0 = [0, b]. Thus ab2 = 0; but
since d is an integral domain and b 6= 0, then a = 0.

This whole process is very powerful. We start with an integral domain, and can turn it most
naturall into a field. As a matter of fact, we can show that this F is in some sense the smallest field
that contains D!

Theorem 6.4.3. Let D ⊂ K where K is a field. Then K has a subfield that is isomorphic to F .

Proof. Consider the map φ : F → K given by for [a, b] ∈ F ,

φ : [a, b] 7→ ab−1 ∈ K.

The claim is that by φ, F ∼= Imφ, where D ⊂ Imφ ⊂ K. Clearly, for all d ∈ D, d = φ([d, 1]), so
D ⊂ Imφ. Next, we show that φ is a ring homomorphism:

1. φ([a, b] + [c, d]) = φ([ad + bc, bd]) = ad(bd)−1 + bc(bd)−1 = φ([ad, bd]) + φ([bc, bd]). This is
because (a, b) ∼ (ad, bd) for d 6= 0.

2. φ([a, b][c, d]) = φ([ac, bd]) = ac(bd)−1 = ab−1cd−1 = φ([a, b])φ([c, d]).

Next, we verify that φ is injective. If we can do this, then Imφ is isomorphic to F .
Suppose φ([a, b]) = φ([c, d]). This means that ab−1 = cd−1. Then ad = bc; but by ∼, this implies

that (a, b) ∼ (c, d). Thus [a, b] = [c, d]. By the first isomorphism theorem for rings, this means that
kerφ = [0, d] and that

F/ kerφ = F ∼= Imφ.

In some sense, this means that we have done the bare minimum to embed D into a field, which
is powerful.

6.5 Unique Factorization Domains

What was reason we went throguh lengths to prove that we can embed an integral domain in a
field? If you recall our main goal, we wanted to generalize the fundamental theorem of arithmetic
to certain integral domains. In particular, we wanted to do this for polynomial rings over integral
domains, D[x].

Definition 6.5.1. Suppose a, b ∈ D where D is an integral domain, and a 6= 0. We say that a|b if
b = ac for some c ∈ D.

However, though we had that (a|b∧b|a)⇒ a = b), we may not have the same in integral domains,
since they may differ up to a sign.
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Definition 6.5.2. For a, b ∈ D, we say that a ∼ b if ∃u ∈ D× (u is invertible) such that

a = bu.

It is easy to check that this is an equivalence relation. We say a and b only differ by an invertible
element. The reason we defined this is for the following fact:

Lemma 6.5.1. If a, b ∈ D \ {0}, and a|b and b|a, then a ∼ b.

Proof. We have b = ac and a = bd. Thus a = bd = acd = a · 1. Thus cd = 1, so c, d ∈ D×. Thus
a ∼ b.

For a ∈ D, a = (au)u−1∀u ∈ D×. But this is a trivial way to write a, much like for primes,
p = p(x/x) where x is invertible is the only way to factor p. Thus, we provide an analogous definition
for integral domains.

Definition 6.5.3 (Irreducible Elements). If p ∈ D \ {0}, and p is not invertible, and

p = ab⇒ aD× or b ∈ D×

then we say p is an irreducible element in D.

Example. The polynomial 3x+10 ∈ R[x] is irreducible. It’s nonzero since only constant polynomials
are invertible in R[x]. Now suppose 3x + 1 = fg. This implies that deg(f) + deg(g) = 1. But
deg(f),deg(g) ≥ 0. Thus deg(f) or deg(g) = 0. Thus f or g is invertible. In general, degree 1
polynomials are irreducible, and degree 2 polynomials may not be.

Lemma 6.5.2. If p ∈ D is irreducible, and p ∼ q, then q is also irreducible.

Proof. If q = pu, where u ∈ D×, then q 6= 0. This also shows that q /∈ D×, since we would have
puq−1 = 1 so p would be invertible, a contradiction. Thus, if q = ab, then pu = ab so p = abu−1.
This implies that a ∼ 1 or bu−1 ∼ 1. Then this implies that a ∼ 1 or b ∼ 1, which is equivalent to
saying either a or b is invertible.

Definition 6.5.4. Let D be an integral domain with unit 1 6= 0. If for every a ∈ D, a 6= 0, and
a /∈ D×, then

1. a = p1p2 · · · pr where pi are irreducible, and

2. If a = p1 · · · pr = q1 · · · qs, where pi, qj are prime, then r = s, and p1 ∼ qi after permutation,

then we say that D is a unique factorization domain (UFD).

Example. Z is a unique factorization domain.

6.5.1 Polynomial Rings Revisited

In order to discuss implications, we discuss polynomial rings briefly. Recall that for a commutative
ring R, we let

R[x] = {a0 + a1x+ · · ·+ anx
n : ai ∈ R,n ∈ N}

and the degree of f is deg(f). Moreover, (R,+, ·) is also a ring.

Lemma 6.5.3. If D is an integral domain, then so is D[x]. Moreover, for f, g ∈ D[x], we have that
if f, g 6= 0, then deg(fg) = deg(f) + deg(g).

Example. For a polynomial ring R[x, y] = R[x][y]. The reason is that we can regroup it so that we
isolate the degrees of y; we can consider any two variable polynomial as having coefficients in R[x].
This helps us for the following fact:
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Corollary 6.5.4. If D is an integral domain, then so is D[x1, . . . , xn].

Proof. We can do this inductively. We proved that D[x1] is an integral domain if D is an integral
domain.

In particular, if K is a field (which is an integral domain), then so is K[x1, . . . , xn].

6.6 Euclidean Domains

We initiated our study of unique factorization domain in order to generalize the structure of the
integers. We now turn to a particular example of unique factorization domains, known as Euclidean
Domains (EUD).

Definition 6.6.1. Suppose D is an integral domain, and D 6= {0}. If there exists a function
d : D \ {0} → N which satisfies

1. a, b ∈ D \ {0} ⇒ d(a) ≤ d(ab).

2. If a ∈ D, b ∈ D \ {0} ⇒ ∃q, r ∈ D such that

a = bq + r

with r = 0 or r 6= 0 and d(r) < d(b)

then we say D is a Eulidean Domain.

Notice how we define the function d with the degree of polynomials in mind.

Example. Suppose D = Z, and d(a) = |a|. We can verify that this is a Euclidean domain:

1. d(ab) = |ab| = |a||b| ≥ |a| = d(a).

2. Since |a| may lie between integer multiples of |b|, we can always find q such that |a− qb| < |b|.
Then let r = a− qb; then a = bq + r, and r = 0 or d(r) = |r| < |b| = d(b).

The next example is very important.

Example. Let K be a field, and consider K[x], where f ∈ K[x] \ {0}. Let d(f) = deg(f) ∈ N.

1. Suppose f, g ∈ K[x] \ {0}. Then we have that

d(fg) = d(f) + d(g) ≥ d(f).

2. f ∈ K[x], g ∈ K[x] \ {0}. Then
f = gh+ r

where h, r ∈ K[x] and r = 0 or deg(r) < deg(h). This is by the long division formula we
learned for polynomials in high school which eventually yields a remainder term.

Example. We denote Z[i] = {a+bi : a, b ∈ Z} as the Gaussian Integers. We will now prove that Z[i]
is a subring of C, and that it is therefore an integral domain. Suppose α, β ∈ Z[i]. Let α = a1 + b1i,
and β = a2 + b2i. Then α− β = (a1 − a2) + (b1 − b2)i ∈ Z[i]. Thus Z[i] is a subgroup of (C,+).

Now we show that they are closed under product. Then αβ = (a1a2 − b1b2) + (a1b2 + a2b1)i.
Thus Z[i] is subring of C, so it is an integral domain.

In order to show that it is a Euclidean Domain, we define d(α) = a2 + b2.

1. For α, β ∈ Z[i], we have that

d(αβ) = |αβ|2 = (|α||β|)2 = d(α)d(β) ≥ d(α).
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2. Suppose α ∈ Z[i] and β ∈ Z[i] \ {0}. The quantity α/β ∈ C. If we visualize the Gaussian
Integers, it can be thought of as a grid pattern with each α at an intersection. Then ∃γ ∈ Z[i]
such that |α/β − γ| < 1, or |α− βγ| < |β|. Then let r = α− βγ. Then α = βγ + r, and either
r = 0 or

d(r) = |r|2 < |β|2 = d(β).

Thus Z[i] is a Euclidean Domain.

Remark. It is worth noting that the remainder term r and the quotient term q may not even be
unique. For instance, in the previous example, there were a few selections we could make of γ.

6.7 Principal Ideal Domains

In this section, we show the result that every ideal can be generated by a single element in a Euclidean
Domain.

Definition 6.7.1 (Principal Ideal Domain). If D is an integral domain with unit 1 6= 0 such that
every ideal is generated by one element, then we say that D is a principal ideal domain (PID).

Theorem 6.7.1 (EUDs are PIDs). Suppose D is a Euclidean Domain, and I ⊂ D is a nonzero
ideal. Then ∃a0 ∈ I such that

I = (a0) = {a0b : b ∈ D}.

Proof. We know that ∃a0 ∈ I such that d(a0) ≤ d(a), ∀ ∈ I \ {0}. THen the claim is that I = (a0).
Clearly, (a0) ⊂ I; next we need to show the other direction.

If a ∈ I, a 6= 0, then a = a0q + r, q, r ∈ D. Here, either r = 0 or r 6= 0 but d(r) < d(a). We
claim that r = 0. If not, then r = a− a0b ∈ I, so d(r) < d(a0) which contradicts our choice of a0 as
having the smallest d-value. Then r = 0 and thus a ∈ (a0). Therefore I = (a0).

Theorem 6.7.2. If D is a Euclidean domain, then D has a unit element 1 6= 0.

Proof. D itself is a nonzero ideal. Then there is an a0 ∈ D such that D = (a0). Now we know that
a0 6= 0, since otherwise D = 0. Thus a0 = a0u for some u ∈ D. For a ∈ D, we have a0ua = a0a.
This implies that ua = a. This tells us that u is the unit element in D.

In fact, principal ideal domains are unique factorization domains, a fact we will not prove here.

Example. Some examples are Z, Z[i], and F[x].

Example. A counter example to aomething that is not a PID (and hence not an EUD) is R[x, y].
Let I be an ideal, and I = {p ∈ R[x, y] : p(0, 0) = 0}; then I is not a principal ideal.

Proof. If I is a principal ideal, so I = (p); this implies that x ∈ I implies that x = pq. Then recall
that any f ∈ R[x, y] as R[x][y]. Then degy(x) = degy(p) + degy(q). But degy(x) is just 0, which
implies that degy(p) = 0. That means that there is no y term in p. Now for y ∈ I, we can do the
same and get that degx(p) = 0. This means that p is a constant polynomial which is nonzero, since
I 6= {0}. But this contradicts how we constructed I, since we said that p(0, 0) = 0. Therefore I is
not principal ideal.

Now we show that EUD ⊂ UFD. This means we can do similar things like we can do for
integers. This doesn’t mean that it will be easy for us to find the unique factorization, even though
we know it exits. But there may be some special cases in which we can compute the irreducibles
that form an element.

Theorem 6.7.3 (EUDs are UFDs). If D 6= 0 is a Euclidean domain, then D is also a unique
factorization domain.
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Proof. Let D be an EUD. If a, b ∈ D \ {0}, and b is not invertible, then d(a) < d(ab). If d(a) = d(b),
then a = (ab)c + r. The claim is that r = 0. If r 6= 0, then from the d inequality we have that
d(r) < d(ab) = d(a), so r = a − ab = a(1 − bc) 6= 0, so d(r) ≥ d(a) which is a contradiction. Then
r = 0. Thus we have a = abc, so bc = 1. Thus b is invertible, which is a contradiction. Thus
d(a) < d(ab). If a ∼ b by an invertible element, then d(a) = d(b).

Every a ∈ D \ {0}, a is not invertible, then we prove that a = p1 · · · pm, where pi are prime
elements. This is proved by induction, like the fundamental theorem of arithmetic. Assume if a is
not the product of finitely many irreducible elements, then a is not irreducible. Thus a = a1b1, and
a1, b1 are not invertible. Then either a1 or b1 is not the product of finitely many prime elements.
Without loss of generality, we say a1 is not the product of finitely many irreducible elements. Then
a1 is not prime; a− 1 = a2b2 where a2 or b2 are not invertible and one of them (say a2) is not the
product of irreducibles. This process repeats. Then we have a sequence of elements, none of which
are a product of primes. Then by the above, we have that d(a) > d(a1). Then we have the chain of
inequality

d(a) > d(a1) > d(a2) > . . . , d(ai) ≥ 0

which is a contradiction, since d is always an integer value, the inequalities are strict, and d(a) is
finite. Therefore, all Euclidean domains are unique factorization domains.

Corollary 6.7.4. If D is a Euclidean Domain, and a, b ∈ D \ {0}, if b is not invertible, then

d(a) < d(ab).

Theorem 6.7.5 (Uniqueness of Decomposition). Proof. If a, b ∈ D where D is a unique factoriza-
tion domain. Then consider (a, b). Since every EUD is a PID, then (a, b) = (c), where c 6= 0 and
is not necessarily unique. Then suppose (c1) = (c2) = (a, b). Then c1 ∼ c2. Now c|a and c|b, and
let d|a and d|c. Hence we call c the greatest common divisor of a and b, denoted c = gcd(a, b).
Now suppose p is an irreducible, and p 6 |a. Then gcd(p, a) ∼ 1. This is because gcd(p, a)|p, so
gcd(p, a) ∼ p or gcd(p, a) ∼ p, so it can only be the first one.

Assume a|bc, and gcd(a, b) ∼ 1. Then a|c since r1a + r2b = 1 ⇒ c = r1ac + r2bc. Thus
a|r1ac, a|r2bc. Thus a|c.

Now suppose a ∈ D \ {0} which si not invertible. Let

a = p1 · · · pm = q1 · · · qn.

Then m = n and after permutation, pi ∼ qi.
We do induction on m; if m = 1, then we have p1 = q1 · · · qn. This implies n = 1; if not, then

since p1 is irreducible, then it must be that q2 · · · qn ∼ 1. This implies that q2 is invertible, which is
a contradiction.

Now assume it is true for m < M >≥. Now for m = M , Then we have p1 · · · pM = q1 · · · qn. Then
pM |q1 · · · qn. Then ∃i : pM ∼ qi. If not, then gcd(pM , qn) ∼ 1 ⇒ pM |q1 · · · qn−1 ⇒ pM |q1 · · · qn−2,
and so on, intil we get that pM |1, which means that pM is invertible, a contradiction. By reordering,
assume pM ∼ qn. Then p1, · · · pM−1 = q1 · · · qn−1u where u is invertible. This tells us that n ≥ 2.
By the induction hypothesis, we get that M − 1 = n − 1; then m = n. Then we get that after
reordering, pi ∼ qi for 1 ≤ i ≤M − 1. Hence we have proved the same for M , so pM ∼ qM .

Remark. For a, b ∈ D \ {0}, then we can use the Euclidean algorithm which tells us

gcd(a, b) = gcd(b, r).

This procdedure must halt, because otherwise we will get the infinite inequality like we did before.

Now we turn to our main focus, converning polynomials. Some applications of this will be that
if F is a field, then F [x] is a UFD; and then so is F [x1][x2] = F [x1, x2], and for any number of
variables.
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Theorem 6.7.6. If D is a UFD, then so is D[x].

Before we prove it, we make the following remark:

Remark. If D is a UFD, and a1, . . . , am ∈ D are not all 0’s, we have that the gcd(a1, . . . , am)
exists.

From now on, we always assume that D is a UFD. For f ∈ D[x]\{0}, then we make the following
observations:

1. If f is invertible in D[x], then it is a constant polynomial. This can be proven using the
degrees.

2. f(x) = anx
n + · · ·+ a0, where an 6= 0. We define the content of f to be

C(f) := gcd(an, an−1, . . . , a0).

If C(f) = 1, then we call f a primitive polynomial.

Lemma 6.7.7 (Gauss). If f, g ∈ D[x] \ {0}, then

C(fg) = C(f)C(g).

In particular, if C(f), C(g) = 1 then C(fg) = 1.

Proof. Let f = amx
m + · · · + a0, and let g = bnx

n + · · · + b0, where an, bn 6= 0. Then f · g is a
polyonomial fg = dm+nx

m+n + · · · + d0. We need that gcd(dm+n, . . . , d0). We need to show that
we cannot find an irreducible element p dividing all the coefficients.

Given p irreducible, then p must not divide some ak, b` since C(f) = C(g) = 1. Then look at
dk+`, wich is

∑
i+j=k+` aibj . Then p 6 |akb`, but p|ak+1b`−1, and p|ak+2b`−2, etc. Thus p 6 |dk+`.

Then gcd(dm+n, . . . , d0) = 1, or C(fg) = 1.
To complete the proof, if you look at f = C(f) · f1, where C(f1) = 1, and g = C(g) · g1, where

C(g1) = 1, then fg = C(f)C(g)f1g1, thus C(fg) = C(f)C(g)C(f1g1) = C(f)C(g).

Once we have this, we have the following. Since D is a UFD, then D ⊂ F is the quotient field of
D which we constructed. Suppose f ∈ F [x] \ {0}. Then

f =
an
bn
xn + · · ·+ a0

b0

where ai, bi ∈ D . We can multiply and divide f by 1/b = 1/(bn · b0), and then take out C(f) = a
so we can get a polynomial

f =
a

b
f1

where C(f1) = 1. We can also assume that gcd(a, b) = 1. Then we have the following:

Lemma 6.7.8. Let f ∈ D[x] \ {0}, and C(f) = 1. Then

f is prime in D[x] which is a UFD (may not be EUD) ⇐⇒ f is prime in F [x] (EUD).

where F [x] is the ring of polynomials over the quotient field F of D.

Proof. Suppose f is prime in D[x], and f = gh, where g, h ∈ F [x]. Then we can write

g =
a1

b1
g1, g1 ∈ D[x], C(g1) = 1

h =
a2

b2
h1, h1 ∈ D[x], C(h1) = 1.
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This means that
f =

a1a2

b1b2
g1h1

from which we get the equality b1b2f = a1a2g1h1. Then c(b1b2f) = c(a1a2g1h1), so b1b2 ∼ a1a2.
Then a1a2 = b1b2u where u is invertible. Thus

f = ug1h1 = (ug1)h1 ∈ D[x].

but f is prime in D[x]. This means that g1 or h1 are invertible. This tells us that, WLOG,
deg(g1) = 0⇒ deg(g) = 0 so g is invertible in F [x], so f is prime in F [x].

Suppose f is a prime polynomial in F [x]. Suppose f(x) = g(x)h(x). We hope to show that
one of them must be invertible in F [x]. Let’s say that g is invertible; this means that g must be a
constant polynomial, and so deg(g) = 0. Then g(x) = a ∈ D \ {0}. Then f(x) = ah(x). Because
the content of f is equivalent to 1, this tells us that a ∈ D×. Therefore, we have proven that if f is
prime in F [x], it is prime in D[x].

Now we are able to prove the main theorem:

Theorem 6.7.9. If D is a UFD, then D[x] is a UFD.

Proof. Suppose f ∈ D[x] \ {0}. Suppose that f is not invertible. Then f /∈ D[x]× = D×. If
deg(f) = 0, then f = p1p2 · · · pm, pi ∈ D are irreducible. Then pi’s are also prime in D[x].

If deg(f) >), then f = C(f)f1 where f1 is primitive, and f1 ∈ D[x]. Now we can do prime
decomposition in D. We know that f1 ∈ F [x], and f1 = g1 · · · gm, gi ∈ F [x] and g are irreducible
and rational coefficients;

gi =
ai
bi
hi, hi ∈ D[x], C(hi) = 1, ai, bi ∈ D \ {0}.

This implies that hi is irreducible in F [x], since it differs from the irreducible g by invertible elements
in F . Thus hi is prime in F [x], and by the above lemma, it is also prime in D[x]. Then

f1 =
a

b
h1h2 . . . hm

we can rearrange this to
bf1 = ah1 · · ·hm

The content of both sides,
C(bf1) ∼ C(ah1 · · ·hm)

Thus a = bu where u ∈ D×. Then f1 = uh1 · · ·hm. But this means that f has a prime composition
in D[x] too.

Now we need to prove uniqueness of this decomposition. Suppose f ∈ D \ {0}, and f is not
invertible. Then f ∼ g1 · · · gm ∼ h1 · · ·hn. Then if deg(f) = 0, then deg(gi) = 0 = deg(hi). We
know that gi, hi are prime in D. therefore, m = n and gi ∼ hi after permutation.

If deg(f) ≥ 1, then we write f ∼ a1 · · · arg1 · · · gm ∼ b1 · · · bsh1 · · ·hn. Where ai ∈ D is irre-
ducible, and gi ∈ D[x] are irreducible, and deg(gi) ≥ 1, and similarly bi ∈ D are irreducible and
hi ∈ D[x] are irreducible and deg(hi) ≥ 1. Thus gi must be primitive, and so is hi. The content of
both sides means that a1 · · · ar ∼ b1 . . . bs. WLOG, we can assume that a1 · · · ar = b1 · · · bs since you
can move the invertible elements somewhere. Since all of these are prime, r = s and ai ∼ bi after
permutation. This means that gi, hi are also prime in F [x]. This tells us m = n and gi ∼ hi after
permutation in F [x]. This tells us

gi(x) =
a

b
hi(x), a, b ∈ D \ {0}.

Then we get ahi = bgi, so by taking the content of both sides, a ∼ b, so a = bu. This means that
gi(x) = uhi(x).
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Example. If Z is a EUD, then Z[x] is a UFD. Since Q is a field, then we have that Q[x],Q[x, y] are
UFD, and similarly C[x],C[x, y] are UFD. This does not mean we can easily know which polynomials
are prime, although there are some cases when we can easily find it out.

Theorem 6.7.10. In C[x], a polynomial is prime if and only if it is of degree 1.

Proof. If p is prime in C[x], and deg(p) ≥ 1. Then we can split the polynomial into p(x) =
cn(x − ρ1)(x − ρ2) · · · (x − ρn), ρj ∈ C. This implies that n = 1 otherwise it would be the product
of polynomials.

Conversely, if deg(p) = 1, then p = gh, so we get that deg(g) + deg(h) = 1 which implies that
deg(g) = 0 or deg(h) = 0. Thus p is an irreducible.

What are prime polynomials in R[x]? It’s easy to check that degree 1 polynomials are. Moreover,
so are quadratic polynomials with no real roots (i.e., x2 + bx+ c, b2 − 4ac < 0). However, these are
all of them. If its degree is greater than or equal to 3, we can derive a contradiction. There is always
the nontrivial factorization of

p = (x− α)(x− α)q

where α ∈ C \ R, and q has degree ≥ 1.
Things become much harder for Q[x]. A special example is a minor case but is also crucial.

Theorem 6.7.11 (Eisenstein Criterion). Let f ∈ Z[x], and suppose f = anx
n + · · ·+ a0. Suppose

p is a fixed prime such that p 6 |an, p|ai where 0 ≤ i ≤ n − 1, but p2 6 |a0. Then this f is prime in
Q[x].

Proof. Assume f is primitive, since we can pull out common divisors. Then we only need to show
that f is prime in Z[x]. Now we do it by contradiction.

If f is not prime in Z[x], and f(x) = g(x)h(x), and g, h are not invertible in Z[x]. Then this
implies that deg(g),deg(h) ≥ 1. If not, then if deg(g) = 0, since f is primitive, then g = ±1, which
would mean that g is invertible in Z[x], a contradiction. We write

g(x) = brx
r + · · ·+ b0

h(x) = cSx
s + · · ·+ c0

and write their product as anx
n + · · · + a0. Moreover, a0 = b0c0. Since p divides a0, then p|b0 or

p|c0. Say p|b0; since p2 6 |a0, then p 6 |c0. On the other hand, an = brcs, but p 6 |an, so p 6 |br. We
can go through, and let p 6 |bk, where k ≤ r be the least such k. Then ak = bk + bk−1c1 + · · ·+ b0ck.
Therefore, we have that p 6 |ak, and k ≤ r < r + s. But this means that k < n, so p|ak. This gives
us a contradiction.

Corollary 6.7.12. IF p is a prime number, m ∈ N, then

xm − p

is irreducible in Q[x].

Proof. p 6 |1, and p|0, p| − p, and p2 6 |p. Thus xm − p is irreducible.

This next example is very important for when we’re learning field theory.

Lemma 6.7.13. Let p be a fixed prime number. Then

1 + x+ x2 + · · ·+ xp−1

is prime in Q[x].
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Proof. Looking at the geometric series, we can make it equal to

1 + x+ x2 + · · ·+ xp−1 =
xp − 1

x− 1
.

Executing a change of variables, let x− 1 = y. Then

(y + 1)p − 1

y
=
yp +

(
p
1

)
yp−1 + · · ·+

(
p
p−1

)
y + 1− 1

y

= yp−1 +

(
p

1

)
yp−2 + · · ·+

(
p

p− 1

)
.

Then since Q[x] and Q[y] are integral domains, we know that they are isomorphic via x 7→ y − 1.
Then we have the Eisenstein criteron, since p 6 |1, but p|

(
p
k

)
, and p2 6 |

(
p
p−1

)
. Then this tells us that

the polynomial is prime in Q[y], so it is also prime in Q[x] since they are isomorphic.
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